Supplementary Material

Proposal of pseudo-intrinsic dynamic nature of interactions: simple methods to generate the perturbed structures and to analyze for the prediction of the nature of high reliability, with the applications

Satoko Hayashi,* Taro Nishide, Hikaru Matsuoka, Ryosuke Imanaka, and Waro Nakanishi*

Faculty of Systems Engineering, Wakayama University, 930 Sakaedani, Wakayama 640-8510, Japan Email: <u>hayashi3@sys.wakayama-u.ac.jp</u> and <u>nakanisi@sys.wakayama-u.ac.jp</u>

Table of Contents

Additional figures, tables, and schemes	S2
Computation information and geometries of compounds	S11
Appendix	S31
Survey of QTAIM, closely related to QTAIM dual functional analysis	S31
Criteria for classification of interactions: behavior of typical interactions elucidated by QTAIM-DFA	\$34
Characterization of interactions	S34
References	S37

Table S1. The interaction distances $r_0(X, Y)$ in **1–56**, optimized with the MP2/S-TZPsp

Species (No.)	r _o (X, Y)
(X-*-Y)	(Å)
He-*-HF (1)	2.3743
Ne-*-HF (2)	2.3724
Ar-*-HF (3)	2.5748
Kr-*-HF (4)	2.5807
Xe-*-HF (5)	2.7654
NN-*-HF (6)	2.0557
HF-*-HF (7)	1.8323
HCN-*-HF (8)	1.8320
$H_2U^HUH(9)$	1.9506
$M_{0} = 0 + C_{1} (11)$	
$M_{00} O_{-}^{*} - C_{12} (11)$	2.000
$M_{P2}O_{-}^{*} = I_{2} (12)$	2.5901
$Me_2S = 12 (13)$ $Me_2S = * - Cl_2 (14)$	2.7324
$Me_2S - *-Br_2$ (15)	2.6735
Me ₂ S-*-l ₂ (16)	2.9439
Me ₂ Se-*-Cl ₂ (17)	2.5682
$Me_2Se^{-*}-Br_2(18)$	2.7150
Me ₂ Se-*-I ₂ (19)	3.0000
Me ₂ Te-*-Cl ₂ (20)	2.5768
Me ₂ Te-*-Br ₂ (21)	2.7634
Me ₂ Te-*-l ₂ (22)	3.0830
[CI-*-Cl ₂] ⁻ (23)	2.2976
[Br-*-Br ₂] ⁻ (24)	2.5511
$[1^{-\tau}-1_2]$ (25)	2.9331
$[CI^{-1} - BICI] (20)$ [Pr * CIPr] = (27)	2.4048
[DICIDI] (27) $[CI_* - ICI] - (28)$	2.4452
$[Br_*-IBr]^-$ (29)	2.5500
$M_{e_2}C(S_{-}^*-C)(30)$	2 2691
Me ₂ BrS-*-Br (31)	2.4411
Me ₂ ClSe-*-Cl (32)	2.3572
Me ₂ BrSe-*-Br (33)	2.5216
Me ₂ ClTe-*-Cl (34)	2.4649
Me ₂ BrTe-*-Br (35)	2.6288
Me ₂ ITe-*-I (36)	2.8721
Me ₂ S ⁺ -*-Cl (37)	1.9862
Me ₂ S ⁺ -*-Br (38)	2.1473
$Me_2S^{+}-*-I(39)$	2.3643
$N_{10} = S_{2}^{+} + D_{10} (40)$	2.1111
$M_{02}SO^{+} * I(41)$	2.2000
$Me_2Se^{-1}(42)$ $Me_2Te^{+}*-Cl(43)$	2.4705
$Me_2Te^+-*-Br(44)$	2.4278
$Me_2Te^+-*-I(45)$	2.6372
CI-*-CI (46)	1.9917
Br-*-Br (47)	2.2756
I-*-I (48)	2.6545
CH ₃ -*-Cl (49)	1.7780
CH ₃ -*-Br (50)	1.9242
$CH_3-*-I(51)$	2.1196
CH ₃ -*-CH ₃ (52)	1.5227
CH ₂ -*-CH ₂ (53)	1.3318
СН- -СН (54)	
UП3 П (ЭЭ) U * U (ЕС)	1.00J0 0.7202
(JC) FIT (JC)	0.7303

Table S2. The w'/w ratios for the interactions in **1–56**, evaluated with POM-M, POM-Z, and CIV, under the MP2/S-TZPsp condition^{*a*}

Species (No.)	(w'/w) _{РОМ-М}	(<i>w'/w</i>) _{POM-Z}	(<i>w'/w</i>) _{CIV}	$\Delta(w'/w)_{\text{POM-Z}}^{b}$	$\Delta(w'/w)_{CIV}$
He-*-H-F (1)	0.0000	0.0000	0.0000	0.0000	0.0000
Ne-*-H-F (2)	0.0000	-0.0002	-0.0002	0.0002	0.0002
Ar-*-H-F (3)	-0.0023	-0.0023	-0.0026	0.0000	0.0004
Kr-*-H-F (4)	-0.0047	-0.0047	-0.0051	0.0000	0.0004
Xe-*-H-F (5)	-0.0062	-0.0062	-0.0068	0.0000	0.0006
NN-*-H-F (6)	-0.0100	-0.0100	-0.0110	0.0000	0.0009
HF-*-H-F (7)	-0.0164	-0.0166	-0.0170	0.0002	0.0006
HCN-*-H-F (8)	-0.0348	-0.0348	-0.0382	0.0000	0.0034
H ₂ O-*-H–OH (9)	-0.0185	-0.0185	-0.0202	0.0000	0.0017
Me ₂ O-*-H–OH (10)	-0.0308	-0.0308	-0.0259	0.0000	-0.0049
Me ₂ O-*-Cl–Cl (11)	-0.0435	-0.0435	-0.0455	0.0000	0.0021
$Me_{2}O^{-*}-Br^{-}Br^{-}(12)$	-0.0631	-0.0631	-0.0661	0.0000	0.0030
Me ₂ O-*-I-I (13)	-0.0582	-0.0582	-0.0601	0.0000	0.0019
$Me_{2}S^{+}-Cl-Cl(14)$	-0.2636	-0.2636	-0.2836	0.0000	0.0200
$Me_2S-*-Br-Br(15)$	-0.2345	-0.2345	-0.2436	0.0000	0.0091
Me ₂ S-*-I-I (16)	-0.1568	-0.1568	-0.1635	0.0000	0.0066
Me ₂ Se-*-Cl-Cl (17)	-0.4229	-0.4231	-0.4276	0.0002	0.0047
$Me_2Se^{-*}-Br-Br(18)$	-0.2742	-0.2742	-0.2799	0.0000	0.0057
Me ₂ Se-*-I-I (19)	-0.1871	-0.1871	-0.1943	0.0000	0.0072
Me ₂ Te-*-Cl-Cl (20)	-0.3209	-0.3211	-0.3022	0.0002	-0.0187
$Me_2Te^{-*}-Br-Br(21)$	-0.3039	-0.3037	-0.2984	-0.0002	-0.0055
Me ₂ Te-*-I-I (22)	-0.2525	-0.2525	-0.2581	0.0000	0.0057
[CI-*-CI-CI] ⁻ (23)	-0.4084	-0.4084	-0.4250	0.0000	0.0166
$[Br-*-Br-Br]^{-}(24)$	-0.3326	-0.3326	-0.3473	0.0000	0.0147
[I-*-I-I] ⁻ (25)	-0.3324	-0.3326	-0.3464	0.0002	0.0140
[CI-*-Br-CI] ⁻ (26)	-0.3660	-0.3660	-0.3832	0.0000	0.0172
[Br-*-Cl-Br] ⁻ (27)	-0.3390	-0.3394	-0.3522	0.0004	0.0132
[CI-*-I-CI] ⁻ (28)	-0.3154	-0.3154	-0.3297	0.0000	0.0144
[Br-*-I-Br]- (29)	-0.3109	-0.3108	-0.3245	-0.0001	0.0136
Cl-*-(Me ₂)S-Cl (30)	-0.3324	-0.3328	-0.3445	0.0004	0.0121
$Br^{*}(Me_{2})S-Br(31)$	-0.2721	-0.2630	-0.2823	-0.0091	0.0102
$Cl-*-(Me_2)Se-Cl(32)$	-0.2914	-0.2916	-0.3025	0.0002	0.0111
$Br^{*}(Me_{2})Se^{-Br}(33)$	-0.2623	-0.2623	-0.2725	0.0000	0.0103
$Cl-*-(Me_2)Te-Cl(34)$	-0.1992	-0.1994	-0.2065	0.0002	0.0074
Br-*-(Me ₂)Te-Br (35)	-0.2058	-0.2060	-0.2134	0.0002	0.0076
I-*-(Me ₂)Te-I (36)	-0.2194	-0.2196	-0.2279	0.0002	0.0085
(Me)H ₃ C–S ⁺ -*-Cl (37)	-0.0147	-0.0147	-0.0136	0.0000	-0.0011
(Me)H ₃ C-S ⁺ -*-Br (38)	-0.0128	-0.0128	-0.0119	0.0000	-0.0009
(Me)H ₃ C–S ⁺ -*-I (39)	-0.0134	-0.0134	-0.0128	0.0000	-0.0006
(Me)H ₃ C−Se ⁺ -*-Cl (40)	-0.0127	-0.0128	-0.0121	0.0002	-0.0006
(Me)H ₃ C–Se ⁺ -*-Br (41)	-0.0113	-0.0113	-0.0108	0.0000	-0.0006
(Me)H ₃ C-Se ⁺ -*-I (42)	-0.0121	-0.0121	-0.0117	0.0000	-0.0004
(Me)H ₃ C−Te ⁺ -*-Cl (43)	-0.0028	-0.0026	-0.0021	-0.0002	-0.0008
(Me)H ₃ C−Te ⁺ -*-Br (44)	-0.0023	-0.0023	-0.0017	0.0000	-0.0006
(Me)H ₃ C–Te ⁺ -*-I (45)	-0.0047	-0.0047	-0.0042	0.0000	-0.0006
(H ₂)H–C-*-Cl (49)	-0.0202	-0.0200	-0.0187	-0.0002	-0.0015
(H ₂)H–C-*-Br (50)	-0.0149	-0.0149	-0.0132	0.0000	-0.0017
(H ₂)H–C-*-I (51)	-0.0112	-0.0110	-0.0091	-0.0002	-0.0021
$H_3C^*-C-H(H_2)$ (52)	-0.0180	-0.0180	-0.0176	0.0000	-0.0004
CH ₂ -*-C–H(H) (53)	-0.0140	-0.0140	-0.0144	0.0000	0.0004
CH-*-C-H (54)	0.0159	0.0159	0.0151	0.0000	0.0008
(H ₂)H–C-*-H (55)	-0.0062	-0.0062	-0.0051	0.0000	-0.0011

^{*a*} The w'/w values are calculated when w = 0.1 (see eqs. (3) and (4) in the text). ^{*b*} $\Delta(w'/w)_{POM-Z} = (w'/w)_{POM-Z} = (w'/w)_{POM$

Table S3. QTAIM functions and C_{ii} values for the standard interactions in **1–56**, evaluated under the MP2/S-TZPsp condition^{*a*}

Species (X-*-Y)	$\rho_{\rm b}(r_{\rm c})$	$(\nabla^2 \rho_{\rm b} (\mathbf{r}_{\rm c})^b)$	$H_{\rm b}(\mathbf{r}_{\rm c})$	$k_{\rm h}(r_{\rm c})^{\rm c}$	Cii ^d	
(No: symmetry)	(au)	(au)	(au)		(Å mdvn⁻¹)	
$He^{+}-HE(1:C_{mv})$	0.0024	0.0018	0.0011	-0 568	210.48	
No-*-HE (2: C_{au})	0.0024	0.0010	0.0011	-0 782	75 9/	
$\Delta r_* = HE (3: C_{av})$	0.0048	0.0030	0.0011	-0.764	10.89	
$Kr_*-HF(\mathbf{A}; C_{m})$	0.0074	0.0037	0.0014	-0.892	21 7/	
$X_{\Theta} * HF (5; C_{\Theta})$	0.0104	0.0045	0.0006	_0.052	21.74	
NNL*-HE (6 · \mathbf{C} ····)	0.0103	0.0030	0.0000	-0.918	10.07	
$HE_*-HE(7:C_*)$	0.0185	0.0080	0.0008	-0.940	6.82	
H_{CN}^{*} H_{E}^{*} $(2, \mathbf{C}_{m})$	0.0240	0.0124	-0.0005	_1 175	0.02 1 27	
$H_{2} \cap A^{*} = H \cap H (0 : C_{\infty})$	0.0330	0.0105	-0.0040	-0.082	6.71	
$M_{P_2}O_{-}*-HOH(10; C_1)$	0.0242	0.0105	-0.0004	-1 079	5 33	
$Me_2O_{-}^*-Cl_2$ (11: C)	0.0313	0.0120	0.0021	-0.894	6.68	
$Me_2O^{-1}-Cl_2$ (11 . Cs) $Me_2O^{-*}-Br_2$ (12 : Cs)	0.0240	0.0118	0.0023	-0.854	151	
$Me_2O^{-3} - Bi_2 (12. C_s)$	0.0302	0.0134	-0.0013	-0.948	4.54	
$M_{02}S_{-}^{*} - Cl_{2}(13, C_{5})$	0.0200	0.0105	-0.0001	-1.005	9.75	
$M_{P_2}S_{-*}Br_2(15;C_1)$	0.0405	0.0108	-0.0000	-1.210	3 17	
$Me_2S^{-1} = Me_2(15, C_s)$	0.0495	0.0100	-0.0078	-1.280	3.17	
$Me_2S = \frac{12}{2} (10.05)$	0.0572	0.0070	-0.0114	-1 362	3 55	
$Me_2Se^{-3}-Br_2(17, C_3)$	0.0537	0.0101	-0.0114	-1.302	2.00	
$Me_2Se_{-}*-l_2$ (19 : C_2)	0.0310	0.0005	-0.0059	-1 323	2.40	
$Me_2 Te_{-*} Cl_2 (20; C_2)$	0.0504	0.0002	-0.0215	-1 670	1 23	
$Me_2Te_{-*}-Br_2(20, c_3)$	0.0000	0.0055	-0.0143	-1 566	1.25	
Me ₂ Te-*-b $(22 \cdot C_{2})$	0.0370	0.0035	-0.0080	-1 472	2.05	
$[C_{1}^{*}-C_{1}^{*}]^{-}$ (23 : D_{acb})	0.0837	0.0045	-0.0216	-1 441	1 11	
$[Br_*-Br_2]^{-}$ (23 : $D \approx h$)	0.0657	0.0137	-0.0145	-1 425	1.11	
$[1-*-1_2]^{-1}$ (25 : D_{mb})	0.0000	0.0030	-0.0119	-1 568	1.05	
$[Cl_*-BrCl]^-(26; D_{orb})$	0.0300	0.0045	-0.0201	-1 470	1.92	
$[Br-*-C[Br]^{-}(27; D_{mb})]$	0.0733	0.0117	-0.0158	-1 404	1 12	
$[C] * -[C]^{-} (28; D_{mb})$	0.0663	0.0079	-0.0212	-1 575	1.12	
$[Br-*-IBr]^{-}$ (29 : D_{cob})	0.0000	0.0075	-0.0158	-1 553	1 15	
$Me_2CIS-*-CI(30: C_2)$	0.0964	0.0046	-0.0362	-1 798	0.92	
$Me_2BrS-*-Br(31:C_{2y})$	0.0804	0.0058	-0.0238	-1 674	0.92	
$Me_2CISe_*-CI(32:C_2)$	0.0860	0.0053	-0.0325	-1 756	0.81	
$Me_2BrSe-*-Br(33; C_2)$	0.0000	0.0053	-0.0225	-1 680	0.90	
$Me_2CITe^{-*}-CI(34;C_2)$	0.0779	0.0078	-0.0311	-1.666	0.69	
$Me_2BrTe-*-Br(35; C_2)$	0.0695	0.0036	-0.0253	-1.776	0.80	
$Me_2 ITe^{-*} - I(36; C_2)$	0.0594	0.0013	-0.0191	-1.883	1.02	
Me ₂ S ⁺ -*-Cl (37 : C ₂)	0.1692	-0.0225	-0.1143	-2.649	0.30	
$Me_2S^+-*-Br(38:C_2)$	0.1389	-0.0103	-0.0771	-2.363	0.36	
Me ₂ S ⁺ -*-I (39 : C ₂)	0.1071	-0.0012	-0.0541	-2.048	0.44	
$Me_2Se^+-*-Cl(40; C_s)$	0.1387	-0.0089	-0.0850	-2.263	0.32	
$Me_2Se^+-*-Br(41:C_s)$	0.1190	-0.0065	-0.0603	-2.276	0.38	
Me ₂ Se ⁺ -*-I (42 : C _s)	0.0967	-0.0032	-0.0444	-2.171	0.46	
Me ₂ Te ⁺ -*-Cl (43 : C _s)	0.1106	0.0123	-0.0546	-1.690	0.33	
$Me_{2}Te^{+}-*-Br(44;C_{s})$	0.0996	0.0012	-0.0478	-1.951	0.38	
Me ₂ Te ⁺ -*-I (45 : C _s)	0.0870	-0.0050	-0.0399	-2.335	0.47	
Cl-*-Cl (46 : <i>D</i> ∞h)	0.1606	-0.0056	-0.0895	-2.144	0.29	
Br-*-Br (47 : <i>D</i> ∞h)	0.1130	-0.0001	-0.0497	-2.005	0.37	
I-*-I (48 : <i>D</i> ∞h)	0.0825	-0.0022	-0.0343	-2.149	0.48	
CH ₃ -*-CI (49 : C _{3v})	0.1855	-0.0338	-0.1362	-2.987	0.30	
$CH_3-*-Br(50: C_3)$	0.1554	-0.0198	-0.0945	-2.724	0.35	
CH ₃ -*-I (51 : C _{3v})	0.1243	-0.0086	-0.0689	-2.332	0.40	
CH ₃ -*-CH ₃ (52 : D _{3d})	0.2462	-0.0791	-0.2233	-4.431	0.23	
CH ₂ -*-CH ₂ (53 : <i>D</i> _{2h})	0.3545	-0.1527	-0.4608	-3.966	0.11	
CH-*-CH (54 : <i>D</i> ∞h)	0.4109	-0.1608	-0.6278	-3.050	0.06	
CH ₃ -*-H (55 : <i>T</i> _d)	0.2851	-0.1420	-0.3436	-6.761	0.18	
H-*-H (56 : <i>D</i> ∞h)	0.2730	-0.1763	-0.3593	-55.617	0.16	

^{*a*} Data are given for the interaction in question at the BCP, as shown by He-*-HF, for example. ^{*b*} $c\nabla^2 \rho_b$ (\mathbf{r}_c) = $H_b(\mathbf{r}_c) - V_b(\mathbf{r}_c)/2$, where $c = \hbar^2/8m$. ^{*c*} $k_b(\mathbf{r}_c) = V_b(\mathbf{r}_c)/G_b(\mathbf{r}_c)$. ^{*d*} Compliance constants, see eq. (R1) in the main text.

Table S4. Selected structural parameters of the optimized structures for 57a-59c, calculated with MP2/S-TZPsp, together with those observed structures for 57a and $59a-59c^a$

Species (No.)	r^b	$\Delta r_{\text{calc-vdW}}$	$\Delta r_{\text{obsd-calc}}^d$	$\theta_{\mathbf{l}}^{e}$	θ_2^f	ϕ_1^g	ϕ_2^h	ϕ_{3}^{i}	¢₄į́	Type k
(¹ O, ¹ E, ² E, ² O: symm)	(Å)	(Å)	(Å)	(°)	(°)	(°)	(°)	(°)	(°)	
57a (S, S: C ₂)	2.9072	-0.6928	0.0196 ^l	121.7	121.7	-155.3	-155.3			CC
57a (S, S: C_1)	2.9995	-0.6005	т	124.0	121.6	-69.6	-171.9			AB
57b (O, S, S: <i>C</i> ₁)	3.0712	-0.5288	т	122.5	126.9	-70.6	-72.5	-178.7		AA
57c (O, S, S, O: <i>C</i> ₂)	3.0950	-0.5051	т	124.8	124.8	72.0	72.0	175.9	175.9	AA
58a (S, Se: <i>C</i> ₁)	3.0134	-0.6866	т	122.9	122.7	70.5	168.8			AB
58b (S, Se, O: <i>C</i> ₁)	3.0732	-0.6268	т	121.6	127.7	72.6	72.4		174.7	AA
58b ' (O, S, Se: <i>C</i> ₁)	3.1551	-0.5449	т	127.0	123.5	71.4	66.2	177.6		AA
58c (O, S, Se, O: <i>C</i> ₁)	3.1317	-0.5683	т	123.2	126.9	77.6	74.1	-173.8	177.5	AA
59a (Se, Se: C ₂)	3.0410	-0.7590	0.0167^{l}	122.8	122.8	-133.8	-133.8			CC
59a (Se, Se: <i>C</i> ₁)	3.1043	-0.6957	т	123.6	122.9	-65.2	-164.9			AB
59b (O, Se, Se: <i>C</i> ₁)	3.1565	-0.6435	0.0021	122.3	128.1	-68.3	-71.0	-173.3		AA
59c (O, Se, Se, O: <i>C</i> ₂)	3.1970	-0.6030	-0.0458	125.7	125.7	-74.4	-74.4	-178.5	-178.5	AA
57a (S, S: C_1) _{obsd-A} ⁿ	2.9181	-0.6819		121.1	122.5	-158.3	-143.3			CC
57a (S, S: C_1) _{obsd-B} ⁿ	2.9356	-0.6644		122.1	123.5	-142.1	-153.0			CC
59a (Se, Se: C_1) _{obsd-A} ⁿ	3.0513	-0.6487		123.9	122.9	-138.8	-154.1			CC
59a (Se, Se: C_1) _{obsd-B} ⁿ	3.0642	-0.7358		123.2	123.0	136.8	148.1			CC
59b (O, Se, Se: C ₁) _{obsd}	3.1586	-0.6414		124.2	126.9	84.6	82.9		-175.0	AA
59c (O, Se, Se, O: C_1) _{obsd}	3.1512	-0.6488		124.7	124.3	-87.1	-86.5	169.5	169.2	AA

^{*a*} See Scheme S1 for definition of selected structural parameters. ^{*b*} Distances between ¹E and ²E atoms. ^{*c*} $\Delta r_{obsd-calc} = r_{obsd} - r_{calc}$, where r_{obsd} and r_{calc} are observed and calculated distances for ¹E^{...2}E, respectively. ^{*d*} $\Delta r_{calc-vdW} = r_{calc} - \Sigma r_{vdW}$, where r_{obsd} and r_{vdW} are observed distances and van der Waals radii (A. Bondi, J. *Phys. Chem.*, **1964**, 68, 441–451.) for ¹E and ²E, respectively. ^{*e*} $\angle C_{8a}C_1^{-1}E.^{f} \angle C_{8a}C_8^{-2}E.^{g} \phi(C_{8a}C_1^{-1}E^{-1}O).^{j} \phi(C_{8a}C_8^{-2}E^{-2}O).^{k}$ See Scheme S1 for definition of types. ^{*l*} Averaged values were calculated for r_{obsd} . ^{*m*} No X-ray crystal structure. ^{*n*} Two structures were obtained by X-ray crystallography.

Table S5. QTAIM functions and QTAIM-DFA parameters of $\rho_b(\mathbf{r}_c)$, $\nabla^2 \rho_b(\mathbf{r}_c)$, $H_b(\mathbf{r}_c)$, $k_b(\mathbf{r}_c)$, $\kappa_{p:POM-M}$	1, and
$\kappa_{\rm p:CIV}$ for 57a–59c, together with C_{ii} values, evaluated under the MP2/S-TZPsp condition ^a	

	- **)			1		
Species (X-*-Y)	$ ho_{ m b}(r_{ m c})$	$ abla^2 ho_{ m b}(\pmb{r}_{ m c})^b$	$H_{\rm b}(\pmb{r}_{\rm c})$	$k_{ m b}(\pmb{r}_{ m c})^c$	$\kappa_{p:POM-M}d$	$\kappa_{p:CIV}^d$	° C _{ii} e
(No:type (symm))	(au)	(au)	(au)		(au ^{−1})	(au ⁻¹)	(Å mdyn^{-1})
S-*-S (57a: CC (C ₂))	0.0231	0.0079	-0.0004	-1.027	107.8	89.6	1.932
S-*-S (57a : AB (C_1))	0.0231	0.0070	-0.0007	-1.046	f	100.3	2.210
S-*-S=O (57b : AA (<i>C</i> ₁))	0.0213	0.0062	-0.0006	-1.049	106.4	105.3	2.565
O=S-*-S=O (57c : AA (<i>C</i> ₂))	0.0184	0.0058	-0.0001	-1.012	107.6	104.9	2.576
S-*-Se (58a : AB (<i>C</i> ₁))	0.0252	0.0071	-0.0012	-1.076	121.6	118.5	2.251
S-*-Se=O (58b : $AA(C_1)$)	0.0236	0.0063	-0.0011	-1.080	127.1	126.9	2.512
Se-*-S=O (58b ': AA (<i>C</i> ₁))	0.0208	0.0056	-0.0008	-1.063	113.7	111.4	2.548
$O=S-*-Se=O(58c: AA(C_1))$	0.0192	0.0057	-0.0003	-1.026	124.7	127.8	2.641
Se-*-Se (59a : CC (<i>C</i> ₂))	0.0242	0.0069	-0.0009	-1.060	167.3	129.9	2.431
Se-*-Se (59a : AB (<i>C</i> ₁))	0.0242	0.0063	-0.0012	-1.086	f	125.6	2.280
Se-*-Se=O (59b : AA (C_1))	0.0232	0.0056	-0.0013	-1.100	134.6	133.1	2.518
$O=Se-*-Se=O(59c: AA(C_2))$	0.0186	0.0052	-0.0004	-1.037	132.6	131.7	2.663

^{*a*} Data are given for the interaction in question at the BCP, as shown by S-*-S, for example. ^{*b*} $c\nabla^2 \rho_b(\mathbf{r}_c) = H_b(\mathbf{r}_c) - V_b(\mathbf{r}_c)/2$, where $c = \hbar^2/8m$. ^{*c*} $k_b(\mathbf{r}_c) = V_b(\mathbf{r}_c)/G_b(\mathbf{r}_c)$. ^{*d*} $\kappa_p = |d^2y/dx^2|/[1 + (dy/dx)^2]^{3/2}$. ^{*e*} Compliance constants, see eq. (R1) in the main text. ^{*f*} Not calculated.

for 57a-59c, evaluated with	n the NBO6 analysis under tl	he M06-2X/S-TZPsp	D//MP2/S-TZP	sp condition
Species (X-*-Y)	$NBO(i) \rightarrow NBO(j)$	E(2) ^a	ΔE^b	F(i,j) ^c
(No: type (symm))		(kcal mol ^{−1})	(au)	(au)
S-*-S (57a : CC (<i>C</i> ₂))	n₅(S)→σ*(S−C _{Me})	2.85 ^d	0.89	0.045
	n _p (S)→σ*(S−C _{Me})	0.55 ^d	0.50	0.015
S-*-S (57a: AB (<i>C</i> ₁))	n _p (S)→σ*(S−C _{Me})	5.71	0.50	0.048
S-*-S=O (57b : <i>C</i> ₁)	n _p (S)→σ*(S=O)	3.36	0.65	0.042
O=S-*-S=O (57c : <i>C</i> ₂)	n₅(S)→σ*(S=O)	1.30 ^d	0.95	0.031
S-*-Se (58a : AB (<i>C</i> ₁))	n _p (S)→σ*(Se−C _{Me})	9.04	0.46	0.058
S-*-Se=O (58b : <i>C</i> ₁)	n _p (S)→σ*(Se=O)	5.54	0.56	0.050
Se-*-S=O (58b ': C ₁)	n _p (Se)→σ*(S=O)	3.56	0.64	0.042
O=S-*-Se=O (58c : <i>C</i> ₁)	n₅(S)→σ*(Se=O)	2.27	0.85	0.039
	n₅(Se)→σ*(S=O)	1.02	1.02	0.029
Se-*-Se (59a: CC (C ₂))	n₅(Se)→σ*(Se−C _{Me})	2.53 ^d	0.90	0.043
	n _p (Se)→σ*(Se−C _{Me})	3.35 ^d	0.44	0.034
Se-*-Se (59a : AB (<i>C</i> ₁))	n₅(Se)→σ*(Se−C _{Me})	0.73	0.90	0.023
	n _p (Se)→σ*(Se−C _{Me})	9.86	0.44	0.059
Se-*-Se=O (59b : <i>C</i> ₁)	n _p (Se)→σ*(Se=O)	6.18	0.54	0.052
O=Se-*-Se=O (59c : <i>C</i> ₂)	n₅(Se)→σ*(Se=O)	1.73 ^d	0.92	0.035

Table S6. Contributions from the donor-acceptor (NBO(i) \rightarrow NBO(j)) interactions in the optimized structures for **57a**–**59c**. evaluated with the NBO6 analysis under the M06-2X/S-TZPsp//MP2/S-TZPsp condition

^{*a*} Second-perturbation energy. ^{*b*} The diagonal elements (orbital energies). ^{*c*} The off-diagonal NBO Fock matrix element. ^{*d*} Only one side of the CT interaction is shown due to C₂ symmetry.

Table S7 . Torsion angles for φ_1 and φ_2 of the perturbed structures ($w = 0.05$) generated with CIV and OMA
for 57a–59c , and the differences for $\Delta \varphi_{1:CIV-OMA}$ and $\Delta \varphi_{2:CIV-OMA}$, evaluated with MP2/S-TZPsp, together
with force constants corresponding to torsion-vibrations for f_1 and f_2 , calculated with frequency analysis ^{<i>a</i>}

Species (X-*-Y)	$arphi_{1: ext{CIV}}{}^{b}$	$arphi$ 2:CIV c	$arphi_{1:OMA}{}^d$	$arphi$ 2:0MA e	$\Delta arphi_{1:CIV-OMA}^{f}$	$\Delta arphi$ 2:CIV-OMA g
(No: type (symm))	(º)	(º)	(º)	(º)	(º)	(º)
S-*-S (57a : CC (<i>C</i> ₂))	-154.2	-154.2	-155.2	-155.2	1.0	1.0
S-*-S (57a : AB (<i>C</i> ₁))	-68.7	-171.7	-69.5	-171.8	0.8	0.2
S-*-S=O (57b : AA (<i>C</i> ₁))	-70.0	-72.2	-70.4	-72.4	0.4	0.2
O=S-*-S=O (57c : AA (<i>C</i> ₂))	-75.8	-75.8	-76.2	-76.2	0.4	0.4
S-*-Se (58a: AB (C1))	69.7	168.4	70.3	168.7	-0.7	-0.3
S-*-Se=O (58b : AA (<i>C</i> ₁))	72.1	72.1	72.5	72.3	-0.4	-0.2
Se-*-S=O (58b': AA (C1))	71.0	65.6	71.3	66.1	-0.3	-0.5
O=S-*-Se=O (58c : AA (<i>C</i> ₁))	77.2	73.7	77.6	74.0	-0.4	-0.3
Se-*-Se (59a: CC (C ₂))	-132.6	-132.6	-133.7	-133.7	1.1	1.1
Se-*-Se (59a : AB (<i>C</i> ₁))	-64.3	-164.6	-65.0	-164.8	0.7	0.2
Se-*-Se=O (59b : AA (<i>C</i> ₁))	-67.8	-70.8	-68.2	-71.0	0.4	0.2
O=Se-*-Se=O (59c: AA (C ₂))	-74.0	-74.0	-74.3	-74.3	0.3	0.3

^{*a*} See Scheme S1 for definition of φ_1 and φ_2 . ^{*b*} $\varphi(C_{8a}C_8^1E^1C_{Me})$ in perturbed structures generated with CIV method. ^{*c*} $\varphi(C_{8a}C_1^2E^2C_{Me})$ in perturbed structures generated with CIV method. ^{*d*} $\varphi(C_{8a}C_1^1E^1C_{Me})$ in perturbed structures generated with OMA method. ^{*e*} $\varphi(C_{8a}C_1^2E^2C_{Me})$ in perturbed structures generated with OMA method. ^{*e*} $\varphi(C_{8a}C_1^2E^2C_{Me})$ in perturbed structures generated with OMA method. ^{*e*} $\varphi(C_{8a}C_1^2E^2C_{Me})$ in perturbed structures generated with OMA method. ^{*f*} $\Delta \varphi_{1:CIV-OMA} = \varphi_{1:CIV} - \varphi_{1:OMA}$.

Scheme S1. Definition of selected structural parameters (a) and types for A, B, and C, together with AA, AB, BB, and CC (b).

Figure S1. Plots of $(w'/w)_{POM-M}$ and $(w'/w)_{POM-Z}$ versus $(w'/w)_{CIV}$ for **1–56**, except for diatomic molecules of **46–48** and **56**, evaluated with MP2/S-TZPsp. The correlations are shown in the figure.

Figure S2. QTAIM-DFA plots of $H_b(\mathbf{r}_c)$ versus $H_b(\mathbf{r}_c) - V_b(\mathbf{r}_c)/2$ for **1–56**, together with the perturbed structures generated employing POM-M under the MP2/S-TZPsp condition. Whole picture of the plots (a) and the partial one for **37–49** (b). The numbers and colors in the figure are the same as those in Table 3 in the text.

Figure S3. Top views of optimized structures for **57a**–**59c**, (a)–(l), respectively, evaluated by MP2/S-TZPsp, together with observed structures for **57a** (m), **59a** (n), **59b** (o), and **59c** (p). Carbon, hydrogen, selenium, sulfur, and oxygen atoms are shown in black, grey, pink, yellow, and red, respectively.

©AUTHOR(S)

Figure S4. Molecular graphs for **57a–58c**, (a)–(h), respectively, evaluated with MP2/S-TZPsp. BCPs are denoted by red dots, RCP (ring critical points) by yellow dots and BPs by pink lines. Carbon, hydrogen, selenium, sulfur, and oxygen atoms are shown in black, grey, pink, yellow, and red, respectively. Contour plots are drawn on the planes containing ${}^{1}E-{}^{*}-{}^{2}E$ interaction. The contours (ea_{0}^{-3}) are at 2^{*l*} ($l = \pm 8, \pm 7, ...$ and 0).

Figure S5. The vibrational motions of CIV corresponding to ${}^{1}E-{}^{*}-{}^{2}E$ for **57a** (**CC**: C_{2}) (a), **59a** (**CC**: C_{2}) (b), **57a** (**AB**: C_{1}) (c), and **59a** (**AB**: C_{1}) (d). Carbon, hydrogen, selenium, and sulfur atoms are shown in black, grey, pink, and yellow, respectively.

Optimized structures given by Cartesian coordinates

Optimized structures given by Cartesian coordinates for examined molecules, together with the total energies, evaluated with MP2/S-TZPsp method of the Gaussian 09 program. S-TZPsp shows Sapporo-TZP with 1s1p diffuse functions. The optimized structures were confirmed by the frequency analysis.

MP2/S-TZPsp					
Adduct	1 : He-*-HF				
Symmetry	C∞v				
Energy	MP2 = -103	.220068 au			
Standard orient	tation				
10	0	0.000000	0.000000	1.599904	
1	0	0.000000	0.000000	-0.772525	
9	0	0.000000	0.000000	-1.691835	
MP2/S-TZPsp					
Adduct	2 : Ne-*-HF				
Symmetry	C∞v				
Energy	MP2 = -229	.111890 au			
Standard orient	ation				
2	0	0.000000	0.000000	-2.667995	
1	0	0.000000	0.000000	-0.293722	
9	0	0.000000	0.000000	0.625523	
-	-				
MP2/S-TZPsp					
Adduct	3 : Ar-*-HF				
Symmetry	C∞v				
Energy	MP2 = -627.	.295719 au			
Standard orient	tation				
1	0	0.000000	0.000000	-1.359486	
9	0	0.000000	0.000000	-2.279543	
18	0	0.000000	0.000000	1.215298	
IVIPZ/S-IZPSp					
Adduct	4: Kr-*-HF				
Symmetry					
Energy	IVIPZ = -285	2.552550 au			
	ation	0.00000	0.00000	1 020406	
1	0	0.000000	0.000000	-1.839480	
9	0	0.000000	0.000000	-2.700420	
30	U	0.000000	0.000000	0.741202	
MP2/S-T7Psn					
Adduct	5 : Xe-*-HF				
Symmetry	Conv				
Energy	MP2 = -733	2.547900 au			
Standard orient	tation				
1	0	0.000000	0.000000	-2,203689	
9	Ő	0.000000	0.000000	-3.125327	
54	õ	0.000000	0.000000	0.561697	
	J.	0.000000	2.200000	0.00100/	

Adduct Symmetry Energy Standard oright	6 : NN-*-HF $C_{\infty V}$ MP2 = -209.67	6844 au		
7	0	0.000000	0.000000	-1.989923
7	0	0.000000	0.000000	-0.878371
1	0	0.000000	0.000000	1.1//311 2.100083
5	U	0.000000	0.000000	2.100005
MP2/S-TZPsp	7 . HF-*-HF			
Symmetry	Cs			
Energy	MP2 = -200.65	7490 au		
	n n	0 037556	-1 311032	0 000000
1	0	0.140306	0.518420	0.000000
1	0	-0.816309	-1.659736	0.000000
9	0	0.037556	1.437845	0.000000
MP2/S-TZPsp				
Adduct	8 : HCN-*-HF			
Symmetry	$C_{\infty V}$	2601 211		
Standard orient	tation	2001 au		
1	0	0.000000	0.000000	-2.957857
6	0	0.000000	0.000000	-1.891791
7	0	0.000000	0.000000	-0.729577
1 9	0	0.000000	0.000000	2.034799
5	Ū.	0.000000	0.000000	2100 1700
MP2/S-TZPsp				
Adduct	9 : H ₂ O-*-HOH			
Symmetry	$C_{\rm S}$ MP2152 64	2/153 211		
Standard orient	tation	2455 au		
8	0	0.001974	-1.389014	0.000000
1	0	0.476750	-1.734682	0.759799
1	0	0.4/6/50	-1./34682	-0.759799
8	0	0.001974	1.522363	0.000000
1	0	-0.901361	1.842917	0.000000
MP2/S-TZPsp				
Symmetry		חי		
Energy	MP2 = -231.04	0265 au		
Standard orient	tation			
8	0	0.701098	-0.125503	0.000000
6 1	U	0.701098	0.6/8230	1.16//55
1	0	-0.190402	1.309778	1.204848
- 1	0	1.591144	1.311599	1.198935
6	0	0.701098	0.678230	-1.167755
1	0	0.702845	0.008637	-2.022303
1	U	1.591144	1.311599	-1.188832

1	0	-0.190402	1.309778	-1.204848
1	0	-0.957924	-0.981816	0.000000
8	0	-1.911392	-1.161862	0.000000
1	0	-1.980074	-2.118041	0.000000

MP2/S-TZPsp Adduct Symmetry Energy Standard orien	11 : Me ₂ O-*-C C _s MP2 = -1074.0 tation	l ₂ 011895 au		
8	0	1.840253	0.645067	0.000000
6	0	1.840253	1.446229	1.166315
1	0	1.830284	0.775279	2.020028
1	0	0.954392	2.087541	1.198771
1	0	2.734836	2.073754	1.206000
6	0	1.840253	1.446229	-1.166315
1	0	1.830284	0.775279	-2.020028
1	0	0.954392	2.087541	-1.198771
1	0	2.734836	2.073754	-1.206000
17	0	-0.486063	-0.552501	0.000000
17	0	-2.328295	-1.352701	0.000000

MP2/S-TZPsp				
Adduct	12 : Me ₂ O-*-B	Sr ₂		
Symmetry	Cs			
Energy	MP2 = -5299.	973555 au		
Standard orient	tation			
8	0	0.476064	2.612045	0.000000
6	0	-0.182649	3.069801	1.169085
1	0	0.361569	2.673965	2.021000
1	0	-1.214759	2.709436	1.197405
1	0	-0.181281	4.161827	1.207424
6	0	-0.182649	3.069801	-1.169085
1	0	0.361569	2.673965	-2.021000
1	0	-1.214759	2.709436	-1.197405
1	0	-0.181281	4.161827	-1.207424
35	0	0.195570	0.037229	0.000000
35	0	-0.182649	-2.232212	0.000000

MP2/S-TZPsp				
Adduct	13 : Me ₂ O-*-I ₂			
Symmetry	Cs			
Energy	MP2 = -13990.	.880692 au		
Standard orien	tation			
8	0	0.461640	3.196548	0.000000
6	0	-0.194399	3.659010	1.169747
1	0	0.348414	3.261295	2.021783
1	0	-1.228063	3.303224	1.199300
1	0	-0.187068	4.750804	1.206398
6	0	-0.194399	3.659010	-1.169747
1	0	0.348414	3.261295	-2.021783
1	0	-1.228063	3.303224	-1.199300
1	0	-0.187068	4.750804	-1.206398
53	0	0.208986	0.455754	0.000000
53	0	-0.194399	-2.193700	0.000000

MP2/S-TZPsp Adduct	14 · Me ₂ S-*-Cl ₂			
Symmetry	<i>C</i> s			
Energy	MP2 = -1396.5	99605 au		
Standard orien	tation			
16	0	1.833594	-0.216889	0.000000
6	0	1.833594	0.953834	1.365625
1	0	1.765870	0.378276	2.285560
1	0	0.968511	1.610047	1.287537
1	0	2.754263	1.533879	1.367248
6	0	1.833594	0.953834	-1.365625
1	0	1.765870	0.378276	-2.285560
1	0	2.754263	1.533879	-1.367248
1	0	0.968511	1.610047	-1.287537
17	0	-0.789859	-0.451018	0.000000
17	0	-2.875902	-0.432522	0.000000

MP2/S-TZPsp				
Adduct	15 : Me ₂ S-*-B	r ₂		
Symmetry	Cs			
Energy	MP2 = -5622.	.563500 au		
Standard orien	tation			
16	0	0.742054	2.479586	0.000000
6	0	-0.375339	2.822216	1.367335
1	0	0.145337	2.554702	2.283473
1	0	-1.269481	2.209302	1.269064
1	0	-0.632695	3.879173	1.387445
6	0	-0.375339	2.822216	-1.367335
1	0	0.145337	2.554702	-2.283473
1	0	-0.632695	3.879173	-1.387445
1	0	-1.269481	2.209302	-1.269064
35	0	0.265192	-0.151074	0.000000
35	0	-0.375339	-2.443963	0.000000

MP2/S-TZPsp	10. 14. 6 * 1			
Symmetry	16 : IVIE ₂ S-*-I ₂			
Energy	MP2 = -14313	.468910 au		
Standard orien	tation			
16	0	3.218977	0.000000	-0.451772
6	0	3.405362	-1.366147	0.705681
1	0	3.216035	-2.284634	0.155410
1	0	2.674892	-1.271726	1.507662
1	0	4.415689	-1.384298	1.109034
6	0	3.405354	1.366155	0.705673
1	0	3.216016	2.284637	0.155398
1	0	2.674888	1.271732	1.507658
1	0	4.415683	1.384318	1.109022
53	0	0.279791	-0.000003	-0.285954
53	0	-2.411510	0.000001	0.157955
MP2/S-TZPsp				

Adduct $17: Me_2Se^{-*}-Cl_2$ Symmetry C_s EnergyMP2 = -3398.974601 auStandard orientation

34	0	1.442294	-0.250326	0.000000
6	0	1.442294	1.029597	1.438229
1	0	1.340499	0.472329	2.365293
1	0	0.587838	1.689367	1.310741
1	0	2.375780	1.585835	1.438445
6	0	1.442294	1.029597	-1.438229
1	0	1.340499	0.472329	-2.365293
1	0	2.375780	1.585835	-1.438445
1	0	0.587838	1.689367	-1.310741
17	0	-1.122592	-0.380769	0.000000
17	0	-3.286453	-0.286238	0.000000

MP2/S-TZPsp				
Adduct	18: Me ₂ Se-*-B	Sr ₂		
Symmetry	Cs			
Energy	MP2 = -7624.9	938422 au		
Standard orient	ation			
34	0	2.247092	-0.146763	0.000000
6	0	2.247092	1.135485	1.438207
1	0	2.117242	0.580815	2.363363
1	0	1.408060	1.812039	1.296662
1	0	3.190809	1.673739	1.455025
6	0	2.247092	1.135485	-1.438207
1	0	2.117242	0.580815	-2.363363
1	0	3.190809	1.673739	-1.455025
1	0	1.408060	1.812039	-1.296662
35	0	-0.463944	-0.292873	0.000000
35	0	-2.873155	-0.186244	0.000000

MP2/S-TZPsp				
Adduct	19: Me2Se-*-I	2		
Symmetry	Cs			
Energy	MP2 = -16315	5.842970 au		
Standard orient	ation			
34	0	0.743209	2.839002	0.000000
6	0	-0.517738	3.095680	1.436978
1	0	-0.002464	2.861377	2.364500
1	0	-1.350056	2.409427	1.299902
1	0	-0.858551	4.127220	1.451941
6	0	-0.517738	3.095680	-1.436978
1	0	-0.002464	2.861377	-2.364500
1	0	-1.350056	2.409427	-1.299902
1	0	-0.858551	4.127220	-1.451941
53	0	0.241623	-0.118784	0.000000
53	0	-0.517738	-2.758014	0.000000

MP2/S-TZPsp				
Adduct	20: Me2Te-*-0			
Symmetry	Cs			
Energy	MP2 = -7610.	799173 au		
Standard orient	tation			
52	0	0.581606	1.112511	0.000000
6	0	-0.820407	1.422875	1.546818
1	0	-0.344960	1.167052	2.489723
1	0	-1.653145	0.748805	1.362025
1	0	-1.141687	2.460349	1.560754

6	0	-0.820407	1.422875	-1.546818
1	0	-0.344960	1.167052	-2.489723
1	0	-1.653145	0.748805	-1.362025
1	0	-1.141687	2.460349	-1.560754
17	0	-0.010127	-1.395400	0.000000
17	0	-0.820407	-3.526805	0.000000

MP2/S-TZPsp				
Adduct	21 : Me ₂ Te-*-Br	2		
Symmetry	Cs			
Energy	MP2 = -11836.	761014 au		
Standard orien	itation			
52	0	1.997015	-0.305830	0.000000
6	0	1.997015	1.135285	1.546692
1	0	1.823023	0.619406	2.486998
1	0	1.175267	1.818950	1.349222
1	0	2.949585	1.655830	1.577603
6	0	1.997015	1.135285	-1.546692
1	0	1.823023	0.619406	-2.486998
1	0	1.175267	1.818950	-1.349222
1	0	2.949585	1.655830	-1.577603
35	0	-0.766009	-0.260834	0.000000
35	0	-3.225554	0.092015	0.000000

MP2/S-TZPsp				
Adduct	22: Me2Te-*-I2			
Symmetry	Cs			
Energy	MP2 = -20527.6	563233 au		
Standard orien	tation			
52	0	2.680395	-0.410890	0.000000
6	0	2.680395	1.037474	1.545982
1	0	2.496666	0.526219	2.487015
1	0	1.867008	1.730490	1.346113
1	0	3.636740	1.550228	1.582024
6	0	2.680395	1.037474	-1.545982
1	0	2.496666	0.526219	-2.487015
1	0	1.867008	1.730490	-1.346113
1	0	3.636740	1.550228	-1.582024
53	0	-0.398404	-0.250183	0.000000
53	0	-3.140202	0.274762	0.000000

MP2/S-TZPsp				
Adduct	23 : [Cl-*-Cl ₂] ⁻			
Symmetry	D∞h			
Energy	MP2 = -1379.	062461 au		
Standard orie	entation			
17	0	0.000000	0.000000	0.000000
17	0	0.000000	0.000000	2.297638
17	0	0.000000	0.000000	-2.297638

MP2/S-TZPspAdduct $\mathbf{24}$: $[Br-*-Br_2]^-$ Symmetry $D_{\infty h}$ EnergyMP2 = -7718.005333 auStandard orientation

35	0	0.000000	0.000000	0.000000
35	0	0.000000	0.000000	2.551093
35	0	0.000000	0.000000	-2.551093

MP2/S-TZPsp				
Adduct	25 : [I-*-I₂] [−]			
Symmetry	D∞h			
Energy	MP2 = -20754	1.360296 au		
53	0	0.000000	0.000000	0.000000
53	0	0.000000	0.000000	2.933051
53	0	0.000000	0.000000	-2.933051

MP2/S-TZPsp Adduct Symmetry	26 : [CI-*-BrCI] D∞h]- 054002 ou		
Energy	V PZ = -3492.0	054993 au		
35	0	0.000000	0.000000	0.000000
17	0	0.000000	0.000000	2.404824
17	0	0.000000	0.000000	-2.404824

MP2/S-TZPsp				
Adduct	27: [Br-*-CIBr]-			
Symmetry	D∞h			
Energy	MP2 = -5605.01	5886 au		
17	0	0.000000	0.000000	0.000000
35	0	0.000000	0.000000	2.443204
35	0	0.000000	0.000000	-2.443204

MP2/S-TZPsp Adduct Symmetry	28 : [CI-*-ICI] ⁻ D∞ _h			
Energy	MP2 = -7837.5	22556 au		
53	0	0.000000	0.000000	0.000000
17	0	0.000000	0.000000	2.556770
17	0	0.000000	0.000000	-2.556770

MP2/S-TZPsp Adduct Symmetry	29 : [Br-*-IBr] ⁻ <i>D</i> ∞h			
Energy	MP2 = -12063.	468574 au		
53	0	0.000000	0.000000	0.000000
35	0	0.000000	0.000000	2.711416
35	0	0.000000	0.000000	-2.711416

MP2/S-TZPsp Adduct Symmetry	30 : Me ₂ ClS-*- C ₂	-Cl		
Energy	MP2 = -1396.	.624999 au		
16	0	0.000000	0.000000	0.291909
6	0	-1.388433	-0.000013	-0.863215
6	0	1.388433	0.000013	-0.863215
1	0	2.289353	0.000089	-0.254850
1	0	1.329633	0.905267	-1.457590

1	0	1.329720	-0.905300	-1.457508
1	0	-2.289353	-0.000089	-0.254850
1	0	-1.329633	-0.905267	-1.457590
1	0	-1.329720	0.905300	-1.457508
17	0	0.000000	2.268284	0.353763
17	0	0.000000	-2.268284	0.353763

MP2/S-TZPsp				
Adduct	31 : Me ₂ BrS-*	-Br		
Symmetry	C _{2v}			
Energy	MP2 = -5622.	.568576 au		
16	0	0.000000	0.000000	0.143843
6	0	0.000000	1.383548	-1.021033
6	0	0.000000	-1.383548	-1.021033
1	0	0.000000	-2.288141	-0.418020
1	0	0.904992	-1.320394	-1.616137
1	0	-0.904992	-1.320394	-1.616137
1	0	0.000000	2.288141	-0.418020
1	0	-0.904992	1.320394	-1.616137
1	0	0.904992	1.320394	-1.616137
35	0	2.438973	0.000000	0.246450
35	0	-2.438973	0.000000	0.246450

MP2/S-TZPsp				
Adduct	32: Me2ClSe-	*-Cl		
Symmetry	<i>C</i> ₂			
Energy	MP2 = -3399	.019255 au		
34	0	0.000000	0.000000	0.289711
6	0	0.000000	1.459584	-0.967379
6	0	0.000000	-1.459584	-0.967379
1	0	-0.233160	-2.356049	-0.399995
1	0	0.989977	-1.512002	-1.406516
1	0	-0.782969	-1.258989	-1.691067
1	0	0.233160	2.356049	-0.399995
1	0	-0.989977	1.512002	-1.406516
1	0	0.782969	1.258989	-1.691067
17	0	2.356040	0.065578	0.257456
17	0	-2.356040	-0.065578	0.257456

MP2/S-TZPsp				
Adduct	33: Me2BrSe-*	ʿ-Вr		
Symmetry	<i>C</i> ₂			
Energy	MP2 = -7624.9	961303 au		
34	0	0.00000	0.000000	0.199985
6	0	0.00000	1.456095	-1.066366
6	0	0.00000	-1.456095	-1.066366
1	0	-0.236950	-2.354091	-0.502942
1	0	0.991443	-1.507512	-1.503065
1	0	-0.780175	-1.250685	-1.791857
1	0	0.236950	2.354091	-0.502942
1	0	-0.991443	1.507512	-1.503065
1	0	0.780175	1.250685	-1.791857
35	0	2.520383	0.077707	0.194181
35	0	-2.520383	-0.077707	0.194181

MP2/S-TZPsp				
Adduct	34: Me2ClTe-*	*-Cl		
Symmetry	<i>C</i> ₂			
Energy	MP2 = -7610.	876421 au		
52	0	0.000000	0.000000	0.323126
6	0	-1.612866	-0.054844	-1.021945
6	0	1.612866	0.054844	-1.021945
1	0	2.382776	0.682894	-0.583720
1	0	1.251416	0.514055	-1.938198
1	0	1.959106	-0.959889	-1.185187
1	0	-2.382776	-0.682894	-0.583720
1	0	-1.251416	-0.514055	-1.938198
1	0	-1.959106	0.959889	-1.185187
17	0	0.000000	2.453305	0.084559
17	0	0.000000	-2.453305	0.084559

MP2/S-TZPsp Adduct Symmetry	35 : Me ₂ BrTe-* <i>C</i> ₂	-Br		
Energy	MP2 = -11836	.814172 au		
52	0	0.000000	0.000000	0.299846
6	0	0.000000	1.605354	-1.061346
6	0	0.000000	-1.605354	-1.061346
1	0	-0.551977	-2.420905	-0.603478
1	0	1.029359	-1.875908	-1.270457
1	0	-0.526116	-1.268158	-1.950219
1	0	0.551977	2.420905	-0.603478
1	0	-1.029359	1.875908	-1.270457
1	0	0.526116	1.268158	-1.950219
35	0	2.616667	0.101196	0.068464
35	0	-2.616667	-0.101196	0.068464

MP2/S-TZPsp				
Adduct	36 : Me ₂ ITe-*-I			
Symmetry	<i>C</i> ₂			
Energy	MP2 = -20527.6	91134 au		
52	0	0.000000	0.000000	0.285216
6	0	0.000000	1.605002	-1.086164
6	0	0.000000	-1.605002	-1.086164
1	0	-0.556396	-2.418353	-0.629445
1	0	1.028747	-1.878422	-1.295482
1	0	-0.524619	-1.262726	-1.973870
1	0	0.556396	2.418353	-0.629445
1	0	-1.028747	1.878422	-1.295482
1	0	0.524619	1.262726	-1.973870
53	0	2.860052	0.128890	0.056607
53	0	-2.860052	-0.128890	0.056607

MP2/S-TZPsp				
Adduct	37: Me ₂ S+-*-Cl			
Symmetry	Cs			
Energy	MP2 = -936.68	4573 au		
16	0	0.577251	0.311287	0.000000
6	0	-0.241085	1.088051	1.385730
1	0	0.102182	0.581109	2.284626
1	0	-1.318829	1.011762	1.264942

1	0	0.094361	2.125823	1.387843
6	0	-0.241085	1.088051	-1.385730
1	0	0.102182	0.581109	-2.284626
1	0	0.094361	2.125823	-1.387843
1	0	-1.318829	1.011762	-1.264942
17	0	-0.241085	-1.498505	0.000000

38: Me ₂ S+-*-B	r		
Cs			
MP2 = -3049.6	659036 au		
0	0.655979	0.790644	0.000000
0	-0.182475	1.554219	1.386705
0	0.171136	1.057200	2.286860
0	-1.257972	1.451131	1.267067
0	0.127166	2.599711	1.386485
0	-0.182475	1.554219	-1.386705
0	0.171136	1.057200	-2.286860
0	0.127166	2.599711	-1.386485
0	-1.257972	1.451131	-1.267067
0	-0.182475	-1.186200	0.000000
	38 : $Me_2S^{+-*}-B$ C_s MP2 = -3049.6 0 0 0 0 0 0 0 0	38 : $Me_2S^{+}-*-Br$ C_s MP2 = -3049.659036 au 0 0.655979 0 -0.182475 0 0.171136 0 -1.257972 0 0.127166 0 -0.182475 0 0.171136 0 0.127166 0 -1.257972 0 -0.182475	38 : $Me_2S^{+-*}-Br$ C_s MP2 = -3049.659036 au 0 0.655979 0.790644 0 -0.182475 1.554219 0 0.171136 1.057200 0 -1.257972 1.451131 0 0.127166 2.599711 0 -0.182475 1.554219 0 0.171136 1.057200 0 0.127166 2.599711 0 0.127166 2.599711 0 -0.182475 1.451131 0 -0.182475 -1.186200

MP2/S-TZPsp				
Adduct	39 : Me ₂ S+-*-I			
Symmetry	Cs			
Energy	MP2 = -7395.10)8976 au		
16	0	1.349427	0.250104	0.000000
6	0	1.349427	1.392532	1.388533
1	0	1.229818	0.798568	2.291181
1	0	0.541621	2.110771	1.275067
1	0	2.325431	1.877377	1.381706
6	0	1.349427	1.392532	-1.388533
1	0	1.229818	0.798568	-2.291181
1	0	2.325431	1.877377	-1.381706
1	0	0.541621	2.110771	-1.275067
53	0	-0.867504	-0.571424	0.000000

MP2/S-TZPsp				
Adduct	40: Me ₂ Se ⁺ -*-	-Cl		
Symmetry	Cs			
Energy	MP2 = -2939.	.067285 au		
34	0	0.490088	0.240877	0.000000
6	0	-0.450748	1.054217	1.455379
1	0	-0.132471	0.550110	2.364040
1	0	-1.518216	0.946173	1.285268
1	0	-0.144967	2.100004	1.470751
6	0	-0.450748	1.054217	-1.455379
1	0	-0.132471	0.550110	-2.364040
1	0	-0.144967	2.100004	-1.470751
1	0	-1.518216	0.946173	-1.285268
17	0	-0.450748	-1.649000	0.000000

MP2/S-TZPsp	
Adduct	41: Me ₂ Se ⁺ -*-Br
Symmetry	Cs

Energy	MP2 = -5052.	.042140 au		
34	0	0.596231	0.650593	0.000000
6	0	-0.365313	1.447912	1.455863
1	0	-0.039333	0.949810	2.364926
1	0	-1.429950	1.316690	1.285103
1	0	-0.081781	2.499603	1.471641
6	0	-0.365313	1.447912	-1.455863
1	0	-0.039333	0.949810	-2.364926
1	0	-0.081781	2.499603	-1.471641
1	0	-1.429950	1.316690	-1.285103
35	0	-0.365313	-1.400780	0.000000

MP2/S-TZPsp				
Adduct	42: Me ₂ Se ⁺ -*-	-1		
Symmetry	Cs			
Energy	MP2 = -9397.	.491362 au		
34	0	0.672039	1.006432	0.000000
6	0	-0.308724	1.792946	1.457134
1	0	0.028246	1.306306	2.368200
1	0	-1.370640	1.637427	1.291036
1	0	-0.048730	2.850217	1.467361
6	0	-0.308724	1.792946	-1.457134
1	0	0.028246	1.306306	-2.368200
1	0	-0.048730	2.850217	-1.467361
1	0	-1.370640	1.637427	-1.291036
53	0	-0.308724	-1.270225	0.000000

MP2/S-TZPsp				
Adduct	43: Me ₂ Te ⁺ -*-	Cl		
Symmetry	Cs			
Energy	MP2 = -7150.	912472 au		
52	0	0.450517	0.197865	0.000000
6	0	-0.639917	1.077494	1.555198
1	0	-0.349957	0.601917	2.488616
1	0	-1.697578	0.930551	1.351341
1	0	-0.387111	2.136804	1.581274
6	0	-0.639917	1.077494	-1.555198
1	0	-0.349957	0.601917	-2.488616
1	0	-0.387111	2.136804	-1.581274
1	0	-1.697578	0.930551	-1.351341
17	0	-0.639917	-1.797498	0.000000

MP2/S-TZPsp				
Adduct	44: Me ₂ Te ⁺ -*-	Br		
Symmetry	Cs			
Energy	MP2 = -9263.	885186 au		
52	0	0.571185	0.561883	0.000000
6	0	-0.540643	1.422949	1.555731
1	0	-0.245113	0.948924	2.488099
1	0	-1.594634	1.256497	1.348740
1	0	-0.305965	2.486016	1.584558
6	0	-0.540643	1.422949	-1.555731
1	0	-0.245113	0.948924	-2.488099
1	0	-0.305965	2.486016	-1.584558
1	0	-1.594634	1.256497	-1.348740
35	0	-0.540643	-1.590748	0.000000

MP2/S-TZPsp Adduct Symmetry Energy 52 6 1 1 1 6 1 1 53	45 : $Me_2Te^{+}-*-I$ C_s MP2 = -13609.3 0 0 0 0 0 0 0 0	30466 au 0.663767 -0.471176 -0.169326 -1.521503 -0.253897 -0.471176 -0.169326 -0.253897 -1.521503 -0.471176	0.895711 1.738710 1.267171 1.553348 2.804982 1.738710 1.267171 2.804982 1.553348 -1.484764	0.000000 1.557779 2.489256 1.349624 1.587579 -1.557779 -2.489256 -1.587579 -1.349624 0.000000
MP2/S-TZPsp Adduct Symmetry Energy 17 17	46 : CI-*-CI <i>D</i> ∞h MP2 = -919.290 0 0	9787 au 0.000000 0.000000	0.000000 0.000000	0.995869 -0.995869
MP2/S-TZPsp Adduct Symmetry Energy 35 35	47 : Br-*-Br <i>D</i> ∞h MP2 = −5145.24 0 0	8000 au 0.000000 0.000000	0.000000 0.000000	1.137779 -1.137779
MP2/S-TZPsp Adduct Symmetry Energy 53 53	48 : I-*-I <i>D</i> ∞h MP2 = −13836.1 0 0	.54371 au 0.000000 0.000000	0.000000 0.000000	1.327269 -1.327269
MP2/S-TZPsp Adduct Symmetry Energy 6 17 1 1 1	49 : CH ₃ -*-Cl <i>C</i> _{3v} MP2 = -499.474 0 0 0 0 0 0 0	395 au 0.000000 0.000000 0.000000 -0.890025 0.890025	0.000000 0.000000 1.027712 -0.513856 -0.513856	-1.122759 0.655223 -1.467415 -1.467415 -1.467415
MP2/S-TZPsp Adduct Symmetry Energy 6 35	50 : CH ₃ -*-Br C ₃ MP2 = -2612.44 0 0	2905 au 0.000000 0.000000	0.000000 0.000000	-1.507569 0.416610

1	0	1.029151	0.000000	-1.845316
1	0	-0.514575	0.891271	-1.845316
1	0	-0.514575	-0.891271	-1.845316

MP2/S-TZPsp Adduct Symmetry	51 : CH₃-*-I <i>C</i> ₃v			
Energy	MP2 = -6957.88	34713 au		
6	0	0.000000	0.000000	-1.795480
53	0	0.000000	0.000000	0.324106
1	0	0.000000	1.028494	-2.134916
1	0	-0.890702	-0.514247	-2.134916
1	0	0.890702	-0.514247	-2.134916

MP2/S-TZPsp				
Adduct	52 : CH ₃ -*-CH ₃			
Symmetry	D _{3d}			
Energy	MP2 = -79.623	437 au		
6	0	0.000000	0.000000	0.761329
6	0	0.000000	0.000000	-0.761329
1	0	0.000000	1.014832	1.155955
1	0	-0.878870	-0.507416	1.155955
1	0	0.878870	-0.507416	1.155955
1	0	0.000000	-1.014832	-1.155955
1	0	-0.878870	0.507416	-1.155955
1	0	0.878870	0.507416	-1.155955

MP2/S-TZPsp				
Adduct	53: CH ₂ -*-CH ₂			
Symmetry	D _{2h}			
Energy	MP2 = -78.39345	51 au		
6	0	0.000000	0.000000	0.665891
6	0	0.000000	0.000000	-0.665891
1	0	0.000000	0.922897	1.228598
1	0	0.000000	-0.922897	1.228598
1	0	0.000000	0.922897	-1.228598
1	0	0.000000	-0.922897	-1.228598

MP2/S-TZPsp				
Adduct	54 : CH-*-CH			
Symmetry	D∞h			
Energy	MP2 = -77.1531	L93 au		
6	0	0.000000	0.000000	0.606053
6	0	0.000000	0.000000	-0.606053
1	0	0.000000	0.000000	1.668691
1	0	0.000000	0.000000	-1.668691

MP2/S-TZPsp				
Adduct	55 : CH₃-*-H			
Symmetry	Td			
Energy	MP2 = -40.408	3730 au		
6	0	0.000000	0.000000	0.000000
1	0	0.626906	0.626906	0.626906
1	0	-0.626906	-0.626906	0.626906

1	0	0.626906	-0.626906	-0.626906
1	0	-0.626906	0.626906	-0.626906

MP2/S-TZPsp Adduct Symmetry Energy 1 1	56 : H-*-H <i>D</i> ∞h MP2 = −1.16495 0 0	57 au 0.000000 0.000000	0.000000 0.000000	0.369143 -0.369143
MP2/S-TZPsp				
Adduct	57a (Type: CC)			
Symmetry	<i>C</i> ₂			
Energy	MP2 = -1258.80	00858 au		
6	0	0.000000	0.000000	0.575113
6	0	0.000000	0.000000	2.018700
6	0	0.000000	1.282143	-0.072651
6	0	-0.066547	1.209787	2.744593
6	0	0.000000	-1.282143	-0.072651
6	0	0.066547	-1.209787	2.744593
6	0	-0.095041	2.439804	0.689618
6	0	-0.134058	2.412357	2.089726
6	0	0.095041	-2.439804	0.689618
6	0	0.134058	-2.412357	2.089726
1	0	-0.065811	1.162016	3.826509
1	0	0.065811	-1.162016	3.826509
1	0	-0.134038	3.399146	0.196514
1	0	-0.203096	3.341017	2.641002
1	0	0.134038	-3.399146	0.196514
1	0	0.203096	-3.341017	2.641002
16	0	0.201178	1.439604	-1.826344
6	0	0.861576	3.113006	-1.971976
1	0	0.099146	3.874793	-1.826393
1	0	1.687082	3.263000	-1.278628
1	0	1.228660	3.179245	-2.994789
16	0	-0.201178	-1.439604	-1.826344
6		A 061E76		1 071076

–	0	1.220000	J.1/JZ+J	2.55470
16	0	-0.201178	-1.439604	-1.826344
6	0	-0.861576	-3.113006	-1.971976
1	0	-0.099146	-3.874793	-1.826393
1	0	-1.687082	-3.263000	-1.278628
1	0	-1.228660	-3.179245	-2.994789

MP2/S-TZPsp Adduct Symmetry	57a (Type: AB) <i>C</i> 1			
Energy	MP2 = -1258.80	03352 au		
6	0	0.500900	0.331404	-0.088920
6	0	1.467183	1.396081	0.036323
6	0	1.027809	-0.986268	-0.269342
6	0	2.845018	1.140744	-0.146070
6	0	-0.890804	0.691574	-0.023961
6	0	1.060155	2.715231	0.332998
6	0	2.389216	-1.186436	-0.448184
6	0	3.303319	-0.124460	-0.418783
6	0	-1.232258	2.000992	0.296436
6	0	-0.270559	3.002783	0.492630
1	0	3.533118	1.973603	-0.064543

1	0	2.737733	-2.202172	-0.581853
1	0	4.358386	-0.311212	-0.568748
1	0	-2.269863	2.280993	0.380455
1	0	-0.593729	4.005604	0.740085
1	0	1.816495	3.483882	0.431752
16	0	0.049977	-2.463314	-0.199934
6	0	-0.322941	-2.457107	1.571185
1	0	0.596902	-2.504006	2.150371
1	0	-0.900801	-1.573139	1.834074
1	0	-0.923137	-3.344816	1.765233
16	0	-2.170810	-0.461854	-0.443160
6	0	-3.637026	0.590071	-0.419502
1	0	-3.868804	0.957711	0.578456
1	0	-3.552509	1.418120	-1.121182
1	0	-4.440532	-0.069535	-0.743463

MP2/S-TZPsp				
Adduct	57b (Type: AA)			
Symmetry	<i>C</i> ₁			
Energy	MP2 = -1333.89	8245 au		
6	0	-0.698741	0.258366	0.006046
6	0	-1.822278	1.160241	-0.022734
6	0	-0.983094	-1.129319	0.181126
6	0	-3.127854	0.676065	0.219055
6	0	0.594643	0.840033	-0.147009
6	0	-1.628313	2.536129	-0.282945
6	0	-2.278560	-1.559473	0.420455
6	0	-3.352926	-0.657290	0.463901
6	0	0.744871	2.185780	-0.414834
6	0	-0.368411	3.038029	-0.498829
1	0	-2.450853	-2.620204	0.548566
1	0	-4.353855	-1.019432	0.657584
1	0	-3.948999	1.382612	0.208360
1	0	1.754474	2.562421	-0.532728
1	0	-0.225033	4.089407	-0.710667
1	0	-2.496444	3.183591	-0.309155
6	0	0.544813	-2.303960	-1.739463
1	0	1.323348	-3.031438	-1.962705
1	0	-0.365938	-2.563691	-2.273829
1	0	0.890434	-1.313834	-2.031103
6	0	2.074806	-0.125334	1.836931
1	0	2.950337	-0.671385	2.183252
1	0	2.093657	0.899789	2.204621
1	0	1.161502	-0.637494	2.126336
8	0	3.245145	1.051231	-0.193429
16	0	0.262320	-2.381775	0.045659
16	0	2.207210	-0.004837	0.036134

MP2/S-TZPsp				
Adduct	57c (Type: AA)			
Symmetry	<i>C</i> ₂			
Energy	MP2 = -1408.98	6459 au		
6	0	0.000000	0.000000	0.825270
6	0	0.000000	0.000000	2.265755
6	0	0.000000	1.274225	0.189283
6	0	-0.078757	1.219826	2.976671
6	0	0.000000	-1.274225	0.189283

6	0	0.078757	-1.219826	2.976671
6	0	-0.093821	2.446056	0.910070
6	0	-0.145596	2.421352	2.313433
6	0	0.093821	-2.446056	0.910070
6	0	0.145596	-2.421352	2.313433
1	0	-0.111050	3.377965	0.356691
1	0	-0.220315	3.348892	2.865353
1	0	-0.091025	1.184089	4.059250
1	0	0.111050	-3.377965	0.356691
1	0	0.220315	-3.348892	2.865353
1	0	0.091025	-1.184089	4.059250
6	0	1.935489	1.219705	-1.625732
1	0	2.256188	1.284740	-2.663659
1	0	2.397574	2.004141	-1.027984
1	0	2.150119	0.233754	-1.219297
6	0	-1.935489	-1.219705	-1.625732
1	0	-2.256188	-1.284740	-2.663659
1	0	-2.397574	-2.004141	-1.027984
1	0	-2.150119	-0.233754	-1.219297
8	0	-0.008362	-3.008643	-1.829506
8	0	0.008362	3.008643	-1.829506
16	0	0.158626	1.539323	-1.599359
16	0	-0.158626	-1.539323	-1.599359

MP2/S-TZPsp				
Adduct	58a (Type: AB)			
Symmetry	<i>C</i> ₁			
Energy	MP2 = -3261.17	'8950 au		
6	0	-3.588397	-0.420629	-0.517946
6	0	-3.273847	0.885621	-0.232961
6	0	-1.939298	1.279566	0.014217
6	0	-0.867873	0.315834	-0.057648
6	0	-1.251136	-1.046596	-0.252879
6	0	-2.572958	-1.387404	-0.496137
1	0	-2.502999	3.325743	0.379297
1	0	-4.611122	-0.712000	-0.717182
1	0	-4.046328	1.644200	-0.191149
6	0	-1.673884	2.631385	0.322272
6	0	0.474310	0.803375	0.074091
1	0	-2.811300	-2.433311	-0.639079
6	0	0.676368	2.137180	0.404244
6	0	-0.385166	3.043447	0.547340
1	0	1.678097	2.513045	0.539941
1	0	-0.172155	4.072469	0.806617
16	0	-0.115007	-2.396648	-0.107003
34	0	2.009170	-0.270171	-0.322653
6	0	3.361229	1.121742	-0.281683
1	0	3.131278	1.918369	-0.985106
1	0	3.512342	1.518081	0.719249
1	0	4.269333	0.612193	-0.599825
6	0	0.126020	-2.344288	1.687096
1	0	0.514681	-1.372273	1.984607
1	0	-0.808894	-2.560309	2.199734
1	0	0.863206	-3.109422	1.925123

Symmetry	<i>C</i> ₁			
Energy	MP2 = -3336.2	261755 au		
6	0	3.671286	-0.654601	0.480228
6	0	3.450995	0.680633	0.238434
6	0	2.148828	1.168872	-0.014123
6	0	1.026619	0.266029	-0.004534
6	0	1.306180	-1.119488	0.180207
6	0	2.596007	-1.556532	0.431194
1	0	2.814004	3.198836	-0.274821
1	0	4.670216	-1.018053	0.681643
1	0	4.274232	1.384931	0.240234
6	0	1.949619	2.545790	-0.264089
6	0	-0.263553	0.838182	-0.179785
1	0	2.764650	-2.616787	0.568065
6	0	-0.422600	2.184971	-0.427928
6	0	0.688326	3.043906	-0.485825
1	0	-1.437335	2.554099	-0.547261
1	0	0.542824	4.097698	-0.684386
16	0	0.038225	-2.347770	0.044295
6	0	-1.847697	-0.152391	1.921228
1	0	-0.923730	-0.646317	2.207783
1	0	-1.873450	0.884965	2.248301
1	0	-2.713734	-0.693850	2.294565
6	0	-0.185633	-2.311575	-1.751898
1	0	-0.422262	-1.302165	-2.085041
1	0	0.712199	-2.671794	-2.248090
1	0	-1.023809	-2.968217	-1.978247
34	0	-2.007931	-0.055473	-0.009779
8	0	-3.054501	1.205536	-0.192202

MP2/S-TZPsp				
Adduct	58b' (Type: AA)			
Symmetry	C_1			
Energy	MP2 = -3336.270	0706 au		
6	0	-2.491988	2.290403	0.532456
6	0	-3.128105	1.094125	0.311186
6	0	-2.387499	-0.077360	0.032816
6	0	-0.945794	-0.040922	-0.006446
6	0	-0.338633	1.241689	0.146945
6	0	-1.093236	2.361987	0.431336
1	0	-4.159472	-1.273220	-0.197623
1	0	-3.061167	3.182488	0.758284
1	0	-4.208599	1.024090	0.346317
6	0	-3.076362	-1.285611	-0.216141
6	0	-0.272828	-1.285169	-0.191303
1	0	-0.567038	3.302760	0.545769
6	0	-0.988984	-2.446424	-0.434276
6	0	-2.391914	-2.448114	-0.475401
1	0	-0.443195	-3.371646	-0.564344
1	0	-2.924902	-3.368509	-0.673844
6	0	1.721617	-1.115283	1.863293
1	0	1.404381	-0.093858	2.059348
1	0	1.109780	-1.826100	2.410960
1	0	2.766439	-1.229696	2.144206
6	0	1.377515	1.461058	-1.865424
1	0	0.985017	0.485448	-2.138232
1	0	0.738287	2.264936	-2.228293
1	0	2.395125	1.584634	-2.231124

34	0	1.615290	-1.493273	-0.033022
16	0	1.431121	1.656254	-0.066847
8	0	1.530602	3.135948	0.148326

MP2/S-TZPsp				
Adduct	58c (Type: AA)			
Symmetry	<i>C</i> ₁			
Energy	MP2 = -3411.34	7479 au		
6	0	3.624074	0.377873	0.431436
6	0	3.101512	1.634274	0.236308
6	0	1.718176	1.822572	0.009271
6	0	0.829681	0.689086	-0.012245
6	0	1.434222	-0.590146	0.126743
6	0	2.782653	-0.745265	0.365318
1	0	1.900833	3.957777	-0.180204
1	0	4.681464	0.247931	0.619884
1	0	3.741653	2.507869	0.260874
6	0	1.207409	3.125540	-0.189970
6	0	-0.557629	0.962422	-0.166640
1	0	3.164362	-1.752388	0.486796
6	0	-1.023415	2.243790	-0.366495
6	0	-0.135966	3.333177	-0.392594
1	0	-2.095414	2.376868	-0.478796
1	0	-0.517323	4.332944	-0.553278
6	0	-1.877173	-0.422353	1.891993
1	0	-0.868303	-0.707537	2.179464
1	0	-2.129634	0.575783	2.243356
1	0	-2.603284	-1.151818	2.242483
6	0	0.460475	-2.090056	-1.828574
1	0	0.003111	-1.160305	-2.162600
1	0	1.489954	-2.168041	-2.175284
1	0	-0.125786	-2.946640	-2.155492
34	0	-2.033310	-0.324136	-0.036825
8	0	-3.358670	0.627561	-0.242901
16	0	0.519776	-2.137779	-0.025797
8	0	1.457467	-3.244166	0.331686

MP2/S-TZPsp				
Adduct	59a (Type: CC)			
Symmetry	<i>C</i> ₂			
Energy	MP2 = -5263.54	8709 au		
6	0	0.000000	0.000000	1.039501
6	0	0.000000	0.000000	2.481966
6	0	0.000000	1.269841	0.387925
6	0	-0.096902	1.213918	3.197815
6	0	0.000000	-1.269841	0.387925
6	0	0.096902	-1.213918	3.197815
6	0	-0.133290	2.432140	1.131298
6	0	-0.190438	2.411640	2.532906
6	0	0.133290	-2.432140	1.131298
6	0	0.190438	-2.411640	2.532906
1	0	-0.100874	1.176422	4.280411
1	0	0.100874	-1.176422	4.280411
1	0	-0.175532	3.384422	0.620362
1	0	-0.288552	3.340219	3.079951
1	0	0.175532	-3.384422	0.620362
1	0	0.288552	-3.340219	3.079951

34	0	0.358666	1.477615	-1.479297
6	0	1.597831	2.967039	-1.308254
1	0	1.080536	3.904722	-1.130113
1	0	2.304295	2.758544	-0.509431
1	0	2.123398	3.022863	-2.259625
34	0	-0.358666	-1.477615	-1.479297
6	0	-1.597831	-2.967039	-1.308254
1	0	-1.080536	-3.904722	-1.130113
1	0	-2.304295	-2.758544	-0.509431
1	0	-2.123398	-3.022863	-2.259625

MP2/S-TZPsp Adduct	59a (Type: AB)			
Symmetry	(1)			
Energy	MP2 = -5263.55	0729 au		
6	0	0.841357	0.646446	-0.056679
6	0	1.871771	1.655859	0.012480
6	0	1.282569	-0.694631	-0.265437
6	0	3.216741	1.326014	-0.267700
6	0	-0.517218	1.080707	0.094160
6	0	1.556058	2.989011	0.353231
6	0	2.613197	-0.973460	-0.536486
6	0	3.582825	0.038892	-0.576213
6	0	-0.768718	2.396264	0.461120
6	0	0.256478	3.342052	0.612543
1	0	3.955404	2.117745	-0.229266
1	0	2.902586	-2.005842	-0.682120
1	0	4.612967	-0.204701	-0.800061
1	0	-1.783390	2.726248	0.619027
1	0	0.006033	4.354565	0.901559
1	0	2.356981	3.715851	0.409224
34	0	0.160520	-2.219429	-0.053431
6	0	-0.107839	-2.003610	1.854932
1	0	0.846172	-2.066953	2.370715
1	0	-0.597048	-1.051681	2.045544
1	0	-0.758585	-2.815718	2.172563
34	0	-2.017604	-0.026799	-0.344263
6	0	-3.392152	1.345517	-0.370605
1	0	-3.613797	1.726447	0.622979
1	0	-3.126885	2.154091	-1.047453
1	0	-4.270013	0.827321	-0.753184

MP2/S-TZPsp				
Adduct	59b (Type: AA)			
Symmetry	C_1			
Energy	MP2 = -5338.634131 au			
6	0	-1.047283	0.524594	-0.005181
6	0	-2.183135	1.413175	-0.021469
6	0	-1.314126	-0.861388	0.189303
6	0	-3.478599	0.913589	0.241544
6	0	0.233079	1.120182	-0.185385
6	0	-2.007812	2.789927	-0.289129
6	0	-2.598345	-1.310560	0.446650
6	0	-3.683651	-0.420959	0.496890
6	0	0.367742	2.466697	-0.449709
6	0	-0.756361	3.306668	-0.520261
1	0	-2.760065	-2.371489	0.585007

1	0	-4.677549	-0.794360	0.705037
1	0	-4.308997	1.609444	0.238464
1	0	1.376271	2.852961	-0.568186
1	0	-0.628294	4.359987	-0.732729
1	0	-2.883736	3.427335	-0.305515
6	0	0.294823	-2.003723	-1.881344
1	0	1.133582	-2.641183	-2.152171
1	0	-0.602757	-2.321995	-2.402980
1	0	0.532555	-0.969474	-2.120177
34	0	2.004539	0.279187	0.010975
6	0	1.811239	0.182016	1.939915
1	0	2.655427	-0.381411	2.330181
1	0	1.856185	1.219583	2.264514
1	0	0.869042	-0.286317	2.209467
8	0	3.014793	1.571777	-0.156739
34	0	0.039419	-2.190911	0.031144

MP2/S-TZPsp				
Adduct	59c (Type: AA)			
Symmetry	<i>C</i> ₂			
Energy	MP2 = -5413.707	7013 au		
6	0	0.000000	0.000000	1.225147
6	0	0.000000	0.000000	2.666345
6	0	0.000000	1.271049	0.590171
6	0	-0.068110	1.222316	3.373908
6	0	0.000000	-1.271049	0.590171
6	0	0.068110	-1.222316	3.373908
6	0	-0.076421	2.446437	1.304011
6	0	-0.123928	2.423695	2.708458
6	0	0.076421	-2.446437	1.304011
6	0	0.123928	-2.423695	2.708458
1	0	-0.077013	3.377608	0.745680
1	0	-0.185956	3.352619	3.259760
1	0	-0.078273	1.189657	4.456723
1	0	0.077013	-3.377608	0.745680
1	0	0.185956	-3.352619	3.259760
1	0	0.078273	-1.189657	4.456723
6	0	2.095419	1.190159	-1.268367
1	0	2.474325	1.226502	-2.286720
1	0	2.528496	1.982819	-0.662038
1	0	2.261780	0.211682	-0.823100
34	0	-0.199689	-1.585972	-1.325912
6	0	-2.095419	-1.190159	-1.268367
1	0	-2.474325	-1.226502	-2.286720
1	0	-2.528496	-1.982819	-0.662038
1	0	-2.261780	-0.211682	-0.823100
8	0	-0.161728	-3.225143	-1.441607
34	0	0.199689	1.585972	-1.325912
8	0	0.161728	3.225143	-1.441607

Appendix

QTAIM Dual Functional Analysis (QTAIM-DFA)

The bond critical point (BCP; *) is an important concept in QTAIM. The BCP of $(\omega, \sigma) = (3, -1)^{SA1}$ is a point along the bond path (BP) at the interatomic surface, where charge density $\rho(\mathbf{r})$ reaches a minimum. It is donated by $\rho_b(\mathbf{r}_c)$, so are other QTAIM functions, such as the total electron energy densities $H_b(\mathbf{r}_c)$, potential energy densities $V_b(\mathbf{r}_c)$ and kinetic energy densities $G_b(\mathbf{r}_c)$ at the BCPs. A chemical bond or interaction between A and B is denoted by A–B, which corresponds to the BP between A and B in QTAIM. We will use A-*-B for BP, where the asterisk emphasizes the presence of a BCP in A–B.

The sign of the Laplacian $\rho_b(\mathbf{r}_c)$ ($\nabla^2 \rho_b(\mathbf{r}_c)$) indicates that $\rho_b(\mathbf{r}_c)$ is depleted or concentrated with respect to its surrounding, since $\nabla^2 \rho_b(\mathbf{r}_c)$ is the second derivative of $\rho_b(\mathbf{r}_c)$. $\rho_b(\mathbf{r}_c)$ is locally depleted relative to the average distribution around \mathbf{r}_c if $\nabla^2 \rho_b(\mathbf{r}_c) > 0$, but it is concentrated when $\nabla^2 \rho_b(\mathbf{r}_c) < 0$. Total electron energy densities at BCPs ($H_b(\mathbf{r}_c)$) must be a more appropriate measure for weak interactions on the energy basis.^{SA1–} SA8 $H_b(\mathbf{r}_c)$ are the sum of kinetic energy densities ($G_b(\mathbf{r}_c)$) and potential energy densities ($V_b(\mathbf{r}_c)$) at BCPs, as shown in eq (SA1). Electrons at BCPs are stabilized when $H_b(\mathbf{r}_c) < 0$, therefore, interactions exhibit the covalent nature in this region, whereas they exhibit no covalency if $H_b(\mathbf{r}_c) > 0$, due to the destabilization of electrons at BCPs under the conditions.^{SA1} Eqs (SA2) and (SA2') represent the relations between $\nabla^2 \rho_b(\mathbf{r}_c)$ and $H_b(\mathbf{r}_c)$, together with $G_b(\mathbf{r}_c)$ and $V_b(\mathbf{r}_c)$, which are closely related to the virial theorem.

$$H_{\rm b}(\boldsymbol{r}_{\rm c}) = G_{\rm b}(\boldsymbol{r}_{\rm c}) + V_{\rm b}(\boldsymbol{r}_{\rm c}) \tag{SA1}$$

$$(\hbar^2/8m)\nabla^2\rho_{\rm b}(\boldsymbol{r}_{\rm c}) = H_{\rm b}(\boldsymbol{r}_{\rm c}) - V_{\rm b}(\boldsymbol{r}_{\rm c})/2 \tag{SA2}$$

$$=G_{\rm b}(\boldsymbol{r}_{\rm c})+V_{\rm b}(\boldsymbol{r}_{\rm c})/2 \tag{SA2'}$$

Interactions are classified by the signs of $\nabla^2 \rho_b(\mathbf{r}_c)$ and $H_b(\mathbf{r}_c)$. Interactions in the region of $\nabla^2 \rho_b(\mathbf{r}_c) < 0$ are called shared-shell (SS) interactions and they are closed-shell (CS) interactions for $\nabla^2 \rho_b(\mathbf{r}_c) > 0$. $H_b(\mathbf{r}_c)$ must be negative when $\nabla^2 \rho_b(\mathbf{r}_c) < 0$, since $H_b(\mathbf{r}_c)$ are larger than $(\hbar^2/8m)\nabla^2 \rho_b(\mathbf{r}_c)$ by $V_b(\mathbf{r}_c)/2$ with negative $V_b(\mathbf{r}_c)$ at all BCPs (eq (SA2)). Consequently, $\nabla^2 \rho_b(\mathbf{r}_c) < 0$ and $H_b(\mathbf{r}_c) < 0$ for the SS interactions. The CS interactions are especially called *pure* CS interactions for $H_b(\mathbf{r}_c) > 0$ and $\nabla^2 \rho_b(\mathbf{r}_c) > 0$, since electrons at BCPs are depleted and destabilized under the conditions.^{SA1a} Electrons in the intermediate region between SS and *pure* CS, which belong to CS, are locally depleted but stabilized at BCPs, since $\nabla^2 \rho_b(\mathbf{r}_c) > 0$ but $H_b(\mathbf{r}_c) < 0.^{SA1a}$ We call the interactions in this region *regular* CS,^{SA4,SA5} when it is necessary to distinguish from *pure* CS. The role of $\nabla^2 \rho_b(\mathbf{r}_c)$ in the classification can be replaced by $H_b(\mathbf{r}_c) - V_b(\mathbf{r}_c)/2$, since $(\hbar^2/8m)\nabla^2 \rho_b(\mathbf{r}_c) = H_b(\mathbf{r}_c) - V_b(\mathbf{r}_c)/2$ (eq (SA2)). Scheme SA1 summarizes the classification.

Scheme SA1. Classification of interactions by the signs of $\nabla^2 \rho_b(\mathbf{r}_c)$ and $H_b(\mathbf{r}_c)$, together with $G_b(\mathbf{r}_c)$ and $V_b(\mathbf{r}_c)$.

We proposed QTAIM-DFA by plotting $H_b(\mathbf{r}_c)$ versus $H_b(\mathbf{r}_c) - V_b(\mathbf{r}_c)/2$ (= $(\hbar^2/8m)\nabla^2\rho_b(\mathbf{r}_c)$), ^{SA4a} after the proposal of $H_b(\mathbf{r}_c)$ versus $\nabla^2\rho_b(\mathbf{r}_c)$. ^{SA4b} Both axes in the plot of the former are given in energy unit, therefore, distances on the (x, y) (= $(H_b(\mathbf{r}_c) - V_b(\mathbf{r}_c)/2, H_b(\mathbf{r}_c)$) plane can be expressed in the energy unit, which provides an analytical development. QTAIM-DFA incorporates the classification of interactions by the signs of $\nabla^2\rho_b(\mathbf{r}_c)$ and $H_b(\mathbf{r}_c)$. Scheme S2 summarizes the QTAIM-DFA treatment. Interactions of *pure* CS appear in the first quadrant, those of *regular* CS in the fourth quadrant and SS interactions do in the third quadrant. No interactions appear in the second one.

Scheme SA2. QTAIM-DFA: Plot of $H_b(\mathbf{r}_c)$ versus $H_b(\mathbf{r}_c) - V_b(\mathbf{r}_c)/2$ for Weak to Strong Interactions.

In our treatment, data for perturbed structures around fully optimized structures are also employed for the plots, together with the fully optimized ones (see Fig. SA1).^{SA4–SA8} We proposed the concept of the "dynamic nature of interaction" originated from the perturbed structures. The behavior of interactions at the fully optimized structures corresponds to "the static nature of interactions", whereas that containing

perturbed structures exhibit the "dynamic nature of interaction" as explained below. The method to generate the perturbed structures is discussed later. Plots of $H_b(\mathbf{r}_c)$ versus $H_b(\mathbf{r}_c) - V_b(\mathbf{r}_c)/2$ are analyzed employing the polar coordinate (R, θ) representation with (θ_p, κ_p) parameters.^{SA4a,SA5-SA8} Fig. SA1 explains the treatment. *R* in (R, θ) is defined by eq (SA3) and given in the energy unit. Indeed, *R* does not correspond to the usual interaction energy, but it does to the local energy at BCP, expressed by $[(H_b(\mathbf{r}_c))^2 + (H_b(\mathbf{r}_c) - V_b(\mathbf{r}_c)/2)^2]^{1/2}$ in the plot (cf: eq (SA3)), where R = 0 for the enough large interaction distance. The plots show a spiral stream, as a whole. θ in (R, θ) defined by eq (SA4), measured from the *y*-axis, controls the spiral stream of the plot. Each plot for an interaction shows a specific curve, which provides important information of the interaction (see Fig. SA1). The curve is expressed by θ_p and κ_p . While θ_p , defined by eq (SA5) and measured from the *y*-direction, corresponds to the tangent line of a plot, where θ_p is calculated employing data of the perturbed structures with a fully-optimized structure and κ_p is the curvature of the plot (eq (SA6)). While (R, θ) correspond to the static nature, (θ_p, κ_p) represent the dynamic nature of interactions. We call (R, θ) and (θ_p, κ_p) QTAIM-DFA parameters, whereas $\rho_b(\mathbf{r}_c)$, $\nabla^2 \rho_b(\mathbf{r}_c)$, $G_b(\mathbf{r}_c)$, $V_b(\mathbf{r}_c)$, $H_b(\mathbf{r}_c) - V_b(\mathbf{r}_c)/2$ belong to QTAIM functions. $k_b(\mathbf{r}_c)$, defined by eq (SA7), is an QTAIM function but it will be treated as if it were an QTAIM-DFA parameter, if suitable.

Figure SA1. Polar (R, θ) coordinate representation of $H_b(\mathbf{r}_c)$ versus $H_b(\mathbf{r}_c) - V_b(\mathbf{r}_c)/2$, with (θ_p, κ_p) parameters.

$R = (x^2 + y^2)^{1/2}$	(SA3)
$\theta = 90^{\circ} - \tan^{-1}(y/x)$	(SA4)
$\theta_{\rm p} = 90^{\rm o} - \tan^{-1} \left(\frac{dy}{dx} \right)$	(SA5)
$\kappa_{\rm p} = d^2 y/dx^2 / [1 + (dy/dx)^2]^{3/2}$	(SA6)
$k_{\rm b}(\boldsymbol{r}_{\rm c}) = V_{\rm b}(\boldsymbol{r}_{\rm c})/G_{\rm b}(\boldsymbol{r}_{\rm c})$	(SA7)
where $(x, y) = (H_{b}(\mathbf{r}_{c}) - V_{b}(\mathbf{r}_{c})/2, H_{b}(\mathbf{r}_{c}))$	

Criteria for Classification of Interactions: Behavior of Typical Interactions Elucidated by QTAIM-DFA

 $H_{\rm b}(\mathbf{r}_{\rm c})$ are plotted versus $H_{\rm b}(\mathbf{r}_{\rm c}) - V_{\rm b}(\mathbf{r}_{\rm c})/2$ for typical interactions in vdW (van der Waals interactions), HBs (hydrogen bonds), CT-MCs (molecular complexes through charge transfer), X₃⁻ (trihalide ions), CT-TBPs (trigonal bipyramidal adducts through charge-transfer), Cov-w (weak covalent bonds) and Cov-s (strong covalent bonds).^{SA4–SA8} Rough criteria are obtained by applying QTAIM-DFA, after the analysis of the plots for the typical interactions according to eqs (SA3)–(SA7). Scheme SA3 shows the rough criteria, which are accomplished by the θ and $\theta_{\rm p}$ values, together with the values of $k_{\rm b}(\mathbf{r}_{\rm c})$. The criteria will be employed to discuss the nature of interactions in question, as a reference.

Scheme SA3. Rough classification and characterization of interactions by θ and θ_p , together with $k_b(\mathbf{r}_c)$ (= $V_b(\mathbf{r}_c)/G_b(\mathbf{r}_c)$).

Characterization of interactions

The characterization of interactions is explained employing [¹Cl-²Cl-³Cl]⁻. The wide range of the perturbed structures were generated by partially optimizing $r(^{2}Cl^{-3}Cl)$ in $[^{1}Cl^{-2}Cl^{-3}Cl]^{-}$, assuming the $C_{\infty v}$ symmetry, with $r(^{1}Cl^{-2}Cl)$ being fixed in the wide range. The partial optimization method is called POM.^{SA4b,SA5} The QTAIM functions, such as $V_b(\mathbf{r}_c)$, $G_b(\mathbf{r}_c)$, $H_b(\mathbf{r}_c)$, $H_b(\mathbf{r}_c) - V_b(\mathbf{r}_c)/2$ are calculated at BCPs for the wide varieties of the perturbed structures of $[^{1}Cl^{-2}Cl^{-3}Cl]^{-}$. $H_{b}(\mathbf{r}_{c}) - V_{b}(\mathbf{r}_{c})/2$ and $H_{b}(\mathbf{r}_{c})$ are plotted versus the interaction distances $r({}^{1}Cl{}^{-2}Cl)$ in the perturbed structures of $[{}^{1}Cl{}^{-2}Cl{}^{-3}Cl]^{-}$, in the wide range. Figure SA2 shows the plots. Each plot is analyzed using a regression curve of the ninth function and the first derivative of each regression curve is obtained. As shown in Figure SA2, the maximum value of $H_b(\mathbf{r}_c)$ $(d(H_b(\mathbf{r}_c)/d\mathbf{r} = 0))$ is defined as the borderline between vdW and t-HB interactions. Similarly, the maximum value of $H_b(\mathbf{r}_c) - V_b(\mathbf{r}_c)/2$ (d($H_b(\mathbf{r}_c) - V_b(\mathbf{r}_c)/2$)/dr = 0) does to the borderline between CT-MC and CT-TBP. However, it seems difficult to find a characteristic point corresponding to the borderline between t-HB and CT-MC in nature. Therefore, the borderline is tentatively given by $\theta_p = 150^{\circ}$ based on the expectation form the experimental results, where θ_p is defined by $[90^\circ - \tan^{-1}[dH_b(r_c)/d(H_b(r_c) - V_b(r_c)/2)]]$ in the plot of $H_{\rm b}(\mathbf{r}_{\rm c})$ versus $H_{\rm b}(\mathbf{r}_{\rm c}) - V_{\rm b}(\mathbf{r}_{\rm c})/2$. The proposed classification and characterization of interactions, by means of the QTAIM functions of $H_b(\mathbf{r}_c)$, $H_b(\mathbf{r}_c) - V_b(\mathbf{r}_c)/2$, $G_b(\mathbf{r}_c)$ and/or $V_b(\mathbf{r}_c)$, are summarized in Table SA1. The plot of $H_b(\mathbf{r}_c) - V_b(\mathbf{r}_c)/2$ versus w in Fig. SA2 is essentially the same as that of $\nabla^2 \rho_b(\mathbf{r}_c)$ versus d(H--F) in X-H---F-Y, presented by Espinosa and co-workers.^{SA9}

Figure SA2 Plot of $H_b(\mathbf{r}_c)$ versus w in $r({}^1Cl{}^2Cl) = r_o({}^1Cl{}^2Cl) + wa_o$ for ${}^1Cl{}^2Cl{}^3Cl{}^-$ (a) with the magnified picture of (a) (b) and that of $H_b(\mathbf{r}_c) - V_b(\mathbf{r}_c)/2$ versus w (c). Typical hydrogen bonds without covalency and typical hydrogen bonds with covalency are abbreviated as *t*-HB without cov. and *t*-HB with cov., respectively, whereas Cov-w and Cov-s stand for weak covalent bonds and strong covalent bonds, respectively.

Table SA1. Proposed definitions for the classification and characterization of interactions by the signs $H_b(\mathbf{r}_c)$ and $H_b(\mathbf{r}_c) - V_b(\mathbf{r}_c)/2$ and their first derivatives, together with the tentatively proposed definitions by the characteristic points on the plots of $H_b(\mathbf{r}_c)$ versus $H_b(\mathbf{r}_c) - V_b(\mathbf{r}_c)/2$. The tentatively proposed definitions are shown by italic. The requirements for the interactions are also shown.

ChP/Interaction	Requirements by $H_{\rm b}(\mathbf{r}_{\rm c})$ and $V_{\rm b}(\mathbf{r}_{\rm c})$	Requirements by $G_{\rm b}(\boldsymbol{r}_{\rm c})$ and $V_{\rm b}(\boldsymbol{r}_{\rm c})$
Origin	$H_{\rm b}(\boldsymbol{r}_{\rm c}) - V_{\rm b}(\boldsymbol{r}_{\rm c})/2 = 0; H_{\rm b}(\boldsymbol{r}_{\rm c}) = 0$	$G_{\rm b}(\boldsymbol{r}_{\rm c}) = 0; V_{\rm b}(\boldsymbol{r}_{\rm c}) = 0$
vdW	$H_{\rm b}(\mathbf{r}_{\rm c}) > 0; dH_{\rm b}(\mathbf{r}_{\rm c})/d(-r) > 0$	$G_{\rm b}(\mathbf{r}_{\rm c}) > -V_{\rm b}(\mathbf{r}_{\rm c}); dG_{\rm b}(\mathbf{r}_{\rm c})/d(-r) > -dV_{\rm b}(\mathbf{r}_{\rm c})/d(-r)$
Borderline (BD-1)	$H_{\rm b}(r_{\rm c}) > 0; dH_{\rm b}(r_{\rm c})/d(-r) = 0$	$G_{\rm b}(\mathbf{r}_{\rm c}) > -V_{\rm b}(\mathbf{r}_{\rm c}); dG_{\rm b}(\mathbf{r}_{\rm c})/d(-r) = -dV_{\rm b}(\mathbf{r}_{\rm c})/d(-r)$
$t ext{-HB}_{ ext{with no covalency}}$	$H_{\rm b}(r_{\rm c}) > 0; dH_{\rm b}(r_{\rm c})/d(-r) < 0$	$G_{\mathrm{b}}(\boldsymbol{r}_{\mathrm{c}}) \geq -V_{\mathrm{b}}(\boldsymbol{r}_{\mathrm{c}}); \mathrm{d}G_{\mathrm{b}}(\boldsymbol{r}_{\mathrm{c}}) \leq -\mathrm{d}V_{\mathrm{b}}(\boldsymbol{r}_{\mathrm{c}})$
Borderline (x-intercept)	$H_{\rm b}(\mathbf{r}_{\rm c}) = 0 \ (\theta_{\rm p}^{\ a} = 125^{\rm o})$	$G_{\rm b}(\boldsymbol{r}_{\rm c}) = -V_{\rm b}(\boldsymbol{r}_{\rm c}) (\theta_{\rm p}^{\ a} = 125^{\rm o})$
<i>t</i> -HB _{with covalency}	$H_{\rm b}(\mathbf{r}_{\rm c}) < 0; (125^{\circ} <) \theta_{\rm p}^{a} < 150^{\circ}$	$G_{\rm b}(\boldsymbol{r}_{\rm c}) \leq -V_{\rm b}(\boldsymbol{r}_{\rm c}); (125^{\circ} \leq) \theta_{\rm p}^{\ b} \leq 150^{\circ}$
Borderline (Tentative)	$ heta_{ m p}^{\ a}=150^{o}$	$ heta_{ m p}^{\ b}=150^{\ o}$
CT-MC	$d(H_b(r_c) - V_b(r_c)/2)/d(-r) > 0;$	$\mathrm{d}G_{\mathrm{b}}(\boldsymbol{r}_{\mathrm{c}}) > \mathrm{d}V_{\mathrm{b}}(\boldsymbol{r}_{\mathrm{c}})/2;$
	$150^{\circ} < \theta_{\rm p}^{\ a} < 180^{\circ}$	$150^{\circ} < \theta_{p}^{a} < 180^{\circ}$
Borderline (BD-2)	$d(H_b(r_c) - V_b(r_c)/2)/d(-r) = 0$	$2 dG_{b}(r_{c})/d(-r) = -dV_{b}(r_{c})/d(-r)$
	$(H_{\rm b}(r_{\rm c}) - V_{\rm b}(r_{\rm c})/2 > 0; H_{\rm b}(r_{\rm c}) < 0)$	$(-V_{\rm b}(r_{\rm c})/2 < G_{\rm b}(r_{\rm c}) < -V_{\rm b}(r_{\rm c}))$
CT-TBP with X_3^-	$d(H_b(r_c) - V_b(r_c)/2)/d(-r) < 0$	$2 dG_{b}(r_{c})/d(-r) \le -dV_{b}(r_{c})/d(-r)$
	$(H_{\rm b}(\mathbf{r}_{\rm c}) - V_{\rm b}(\mathbf{r}_{\rm c})/2 > 0; H_{\rm b}(\mathbf{r}_{\rm c}) < 0)$	$(-V_{\rm b}(r_{\rm c})/2 < G_{\rm b}(r_{\rm c}) < -V_{\rm b}(r_{\rm c}))$
Borderline (y-intercept)	$H_{\rm b}(r_{\rm c}) - V_{\rm b}(r_{\rm c})/2 = 0 \ (H_{\rm b}(r_{\rm c}) < 0)$	$G_{\rm b}(r_{\rm c}) = -V_{\rm b}(r_{\rm c})/2 \ (G_{\rm b}(r_{\rm c}) < -V_{\rm b}(r_{\rm c}))$
Cov-w	$H_{\rm b}(\mathbf{r}_{\rm c}) - V_{\rm b}(\mathbf{r}_{\rm c})/2 < 0; R^c < 0.15 \ au$	$G_{\rm b}(\boldsymbol{r}_{\rm c}) \leq -V_{\rm b}(\boldsymbol{r}_{\rm c})/2; R^c \leq 0.15 \ au$
Borderline (Tentative)	$R^{c} = 0.15 \ au$	$R^d = 0.15 au$
Cov-s	$H_{\rm b}(\mathbf{r}_{\rm c}) - V_{\rm b}(\mathbf{r}_{\rm c})/2 < 0; R^{\rm c} > 0.15 \ au$	$G_{\rm b}(\mathbf{r}_{\rm c}) < -V_{\rm b}(\mathbf{r}_{\rm c})/2; R^d > 0.15 \ au$

 $\frac{\partial^{a} \theta_{p} = 90^{\circ} - \tan^{-1} \left[dH_{b}(\mathbf{r}_{c})/d(H_{b}(\mathbf{r}_{c}) - V_{b}(\mathbf{r}_{c})/2) \right], \theta_{p} = 125^{\circ} \text{ is tentatively given for } \theta = 90^{\circ}, \text{ where } \theta \text{ is defined by } 90^{\circ} - \tan^{-1} \left[H_{b}(\mathbf{r}_{c})/(H_{b}(\mathbf{r}_{c}) - V_{b}(\mathbf{r}_{c})/2) \right] \text{ with } H_{b}(\mathbf{r}_{c}) = 0. \quad b \quad \theta_{p} = 90^{\circ} - \tan^{-1} \left[d(G_{b}(\mathbf{r}_{c}) + V_{b}(\mathbf{r}_{c}))/d(G_{b}(\mathbf{r}_{c}) + V_{b}(\mathbf{r}_{c})/2) \right], \theta_{p} = 125^{\circ} \text{ is tentatively given for } \theta = 90^{\circ}, \text{ where } \theta \text{ is defined by } 90^{\circ} - \tan^{-1} \left[d(G_{b}(\mathbf{r}_{c}) + V_{b}(\mathbf{r}_{c}))/d(G_{b}(\mathbf{r}_{c}) + V_{b}(\mathbf{r}_{c})/2) \right], \theta_{p} = 125^{\circ} \text{ is tentatively given for } \theta = 90^{\circ}, \text{ where } \theta \text{ is defined by } 90^{\circ} - \tan^{-1} \left[d(G_{b}(\mathbf{r}_{c}) + V_{b}(\mathbf{r}_{c}))/d(G_{b}(\mathbf{r}_{c}) + V_{b}(\mathbf{r}_{c})/2) \right], \theta_{p} = 125^{\circ} \text{ is tentatively given for } \theta = 90^{\circ}, \text{ where } \theta \text{ is defined by } 90^{\circ} - \tan^{-1} \left[d(G_{b}(\mathbf{r}_{c}) + V_{b}(\mathbf{r}_{c}))/d(G_{b}(\mathbf{r}_{c}) + V_{b}(\mathbf{r}_{c})/2) \right], \theta_{p} = 125^{\circ} \text{ is tentatively given for } \theta = 90^{\circ}, \text{ where } \theta \text{ is defined by } 90^{\circ} - \tan^{-1} \left[(G_{b}(\mathbf{r}_{c}) + V_{b}(\mathbf{r}_{c}))/d(G_{b}(\mathbf{r}_{c}) + V_{b}(\mathbf{r}_{c})/2) \right], \theta_{p} = 125^{\circ} \text{ is tentatively given for } \theta = 90^{\circ}, \text{ where } \theta \text{ is defined by } 90^{\circ} - \tan^{-1} \left[(G_{b}(\mathbf{r}_{c}) + V_{b}(\mathbf{r}_{c}))/(G_{b}(\mathbf{r}_{c}) + V_{b}(\mathbf{r}_{c})/2) \right], \theta_{p} = 125^{\circ} \text{ is tentatively given for } \theta = 90^{\circ}, \text{ where } \theta \text{ is defined by } 90^{\circ} - \tan^{-1} \left[(G_{b}(\mathbf{r}_{c}) + V_{b}(\mathbf{r}_{c}))/(G_{b}(\mathbf{r}_{c}) + V_{b}(\mathbf{r}_{c})/2) \right], \theta_{p} = 125^{\circ} \text{ is tentatively given for } \theta = 90^{\circ}, \text{ where } \theta \text{ is defined by } 90^{\circ} - \tan^{-1} \left[(G_{b}(\mathbf{r}_{c}) + V_{b}(\mathbf{r}_{c})/2)/(G_{b}(\mathbf{r}_{c}) + V_{b}(\mathbf{r}_{c})/2) \right], \theta_{p} = 125^{\circ} \text{ is tentatively given for } \theta = 0, \theta \in 0, \theta$

References

- (a) Atoms in Molecules. A Quantum Theory: eds. R. F. W. Bader, Oxford University Press, Oxford, UK, 1990; (b) C. F. Matta, R. J. Boyd, An Introduction to the Quantum Theory of Atoms in Molecules in The Quantum Theory of Atoms in Molecules: From Solid State to DNA and Drug Design: eds. C. F. Matta, R. J. Boyd, WILEY-VCH, Weinheim, Germany, 2007, Chapter 1.
- (a) R. F. W. Bader, T. S. Slee. D. Cremer, E. Kraka, J. Am. Chem. Soc. 1983, 105, 5061–5068; (b) R.
 F. W. Bader, Chem. Rev. 1991, 91, 893–926; (c) R. F. W. Bader, J. Phys. Chem. A 1998, 102, 7314–7323; (d) F. Biegler-König, R. F. W. Bader, T. H. Tang, J. Comput. Chem. 1982, 3, 317–328; (e) R. F.
 W. Bader, Acc. Chem. Res. 1985, 18, 9–15; (f) T. H. Tang, R. F. W. Bader, P. MacDougall, Inorg. Chem. 1985, 24, 2047–2053; (g) F. Biegler-König, J. Schönbohm, D. Bayles, J. Comput. Chem. 2001, 22, 545–559; (h) F. Biegler-König, J. Schönbohm, J. Comput. Chem. 2002, 23, 1489–1494.
- 3. W. Nakanishi, T. Nakamoto, S. Hayashi, T. Sasamori, N. Tokitoh, Chem. Eur. J. 2007, 13, 255-268.
- 4. (a) W. Nakanishi, S. Hayashi, K. Narahara, J. Phys. Chem. A **2009**, 113, 10050–10057; (b) W. Nakanishi, S. Hayashi, K. Narahara, J. Phys. Chem. A **2008**, 112, 13593–13599.
- 5. W. Nakanishi, S. Hayashi, Curr. Org. Chem. 2010, 14, 181–197.
- (a) W. Nakanishi, S. Hayashi, J. Phys. Chem. A 2010, 114, 7423–7430; (b) W. Nakanishi, S. Hayashi, K. Matsuiwa, M. Kitamoto, Bull. Chem. Soc. Jpn 2012, 85, 1293–1305.
- 7. W. Grimme, J. Wortmann, D. Frowein, J. Lex, G. Chen, R. Gleiter, *J. Chem. Soc.*, *Perkin Trans.* 2 **1998**, 1893–1900.
- 8. C.-T. Lin, N.-J. Wang, Y.-L. Yeh, T.-C. Chou, Tetrahedron, 1995, 51, 2907–2928.
- 9. E. Espinosa, I. Alkorta, J. Elguero, E. Molins, *J. Chem. Phys.* **2002**, *117*, 5529. See also R. Bianchi, G. Gervasio and D. Marabello, *C. R. Chim.*, 2005, **8**, 1392.