# **Supplementary Material**

### Facile conversion of 1,2-dicyanobenzene into chiral bisamidines

Mariano Goldberg,<sup>a</sup> Masaki Nakajima,<sup>a</sup> Michael Bolte,<sup>b</sup> and Michael W. Göbel\*<sup>a</sup>

<sup>a</sup>Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Str. 7, D-60438 Frankfurt am Main, Germany <sup>b</sup>Institute for Inorganic and Analytical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, D-60438 Frankfurt am Main, Germany Email: M.Goebel@chemie.uni-frankfurt.de

### **Table of Contents**

| <sup>1</sup> H and <sup>13</sup> C NMR spectra   | S2  |
|--------------------------------------------------|-----|
| Determination of enantiomeric purities by HPLC   | S36 |
| Crystal structure determination of bisamidine 6a |     |







































































Chromatogram of **19** (Chiralpak IA, 254 nm, 0.7 ml/min, *n*-hexane/2-propanol 10:3 + 20 % CH<sub>2</sub>Cl<sub>2</sub>)



Chromatogram of **19** after recrystallization (Chiralpak IA, 254 nm, 0.7 ml/min, *n*-hexane/2-propanol 10:3 + 20 % CH<sub>2</sub>Cl<sub>2</sub>)



Chromatogram of 13 (DAICEL OJ, 254 nm, 0.8 ml/min, n-hexane/2-propanol 10:4)

**Crystal structure determination of bisamidine 6a.** Data were collected on a STOE IPDS II two-circle diffractometer with a Genix Microfocus tube with mirror optics using Mo $K_{\alpha}$  radiation ( $\lambda = 0.71073$  Å). The data were scaled using the frame scaling procedure in the *X*-AREA program system (Stoe & Cie, 2002). The structure was solved by direct methods using the program *SHELXS* (Sheldrick, 2008) and refined against  $F^2$  with full-matrix least-squares techniques using the program *SHELXL* (Sheldrick, 2008).

Due to the absence of anomalous scatterers, the absolute configuration could not be determined. The H atom bonded to N was freely refined. One phenyl ring is disordered over two positions with a site occupation factor of 0.531(15) for the major occupied site. The disordered atoms were isotropically refined and bond lengths and angles in the disordered moieties were restrained to be equal.

Stoe & Cie, *X-AREA*. Diffractometer control program system. Stoe & Cie, Darmstadt, Germany, 2002.

G. M. Sheldrick, Acta Crystallogr. Sect. A, 2008, 64, 112-122.

| Table 1. Crystal data and structure refine | ment for g1.                                |                                                |  |  |
|--------------------------------------------|---------------------------------------------|------------------------------------------------|--|--|
| Identification code                        | g1                                          |                                                |  |  |
| Empirical formula                          | $C_{36} H_{30} N_4$                         | C <sub>36</sub> H <sub>30</sub> N <sub>4</sub> |  |  |
| Formula weight 518.64                      |                                             |                                                |  |  |
| Temperature 173(2) K                       |                                             |                                                |  |  |
| Wavelength 0.71073 Å                       |                                             |                                                |  |  |
| Crystal system                             | Orthorhombic                                |                                                |  |  |
| Space group                                | P212121                                     |                                                |  |  |
| Unit cell dimensions                       | a = 10.9410(8) Å α= 90°.                    |                                                |  |  |
|                                            | b = 12.3493(17) Å                           | β <b>= 90°.</b>                                |  |  |
|                                            | c = 21.064(2) Å                             | γ = 90°.                                       |  |  |
| Volume                                     | 2846.0(5) Å <sup>3</sup>                    |                                                |  |  |
| Z                                          | 4                                           |                                                |  |  |
| Density (calculated)                       | 1.210 Mg/m <sup>3</sup>                     |                                                |  |  |
| Absorption coefficient                     | 0.072 mm <sup>-1</sup>                      |                                                |  |  |
| F(000)                                     | 1096                                        |                                                |  |  |
| Crystal size                               | 0.320 x 0.270 x 0.140 mm <sup>3</sup>       |                                                |  |  |
| Theta range for data collection            | 3.338 to 25.584°.                           |                                                |  |  |
| Index ranges                               | -13<=h<=12, -11<=k<=14, -21<=l<=25          |                                                |  |  |
| Reflections collected                      | 8580                                        |                                                |  |  |
| Independent reflections                    | 5272 [R(int) = 0.0590]                      |                                                |  |  |
| Completeness to theta = 25.000°            | 99.2 %                                      |                                                |  |  |
| Absorption correction                      | Semi-empirical from equ                     | ivalents                                       |  |  |
| Max. and min. transmission                 | 1.000 and 0.705                             |                                                |  |  |
| Refinement method                          | Full-matrix least-squares on F <sup>2</sup> |                                                |  |  |
| Data / restraints / parameters             | 5272 / 36 / 365                             |                                                |  |  |
| Goodness-of-fit on F <sup>2</sup>          | 0.938                                       |                                                |  |  |
| Final R indices [I>2sigma(I)]              | R1 = 0.0556, wR2 = 0.1188                   |                                                |  |  |
| R indices (all data)                       | R1 = 0.0847, wR2 = 0.1292                   |                                                |  |  |
| Absolute structure parameter               | 6.8(10)                                     |                                                |  |  |
| Largest diff. peak and hole                | 0.277 and -0.308 e.Å <sup>-3</sup>          |                                                |  |  |

#### **General Papers**

|        | v        | V       | 7       | U(eq) |
|--------|----------|---------|---------|-------|
|        | Α        | у       | L       |       |
| N(1)   | 3665(3)  | 2393(3) | 6560(2) | 30(1) |
| N(2)   | 4714(3)  | 1947(3) | 5673(2) | 28(1) |
| C(1)   | 3667(3)  | 1977(3) | 5958(2) | 28(1) |
| C(2)   | 4858(3)  | 2899(4) | 6672(2) | 33(1) |
| C(3)   | 5636(3)  | 2325(4) | 6145(2) | 33(1) |
| N(3)   | -48(3)   | 3309(3) | 5711(2) | 29(1) |
| N(4)   | 1253(3)  | 3128(3) | 6540(2) | 31(1) |
| C(4)   | 894(3)   | 2766(3) | 5997(2) | 28(1) |
| C(5)   | -198(4)  | 4345(3) | 6039(2) | 34(1) |
| C(6)   | 493(3)   | 4094(4) | 6678(2) | 33(1) |
| C(11)  | 2595(3)  | 1437(3) | 5663(2) | 28(1) |
| C(12)  | 1360(3)  | 1774(3) | 5674(2) | 28(1) |
| C(13)  | 498(4)   | 1156(3) | 5343(2) | 36(1) |
| C(14)  | 815(4)   | 228(4)  | 5012(2) | 40(1) |
| C(15)  | 2021(4)  | -98(3)  | 5001(2) | 41(1) |
| C(16)  | 2892(4)  | 501(3)  | 5322(2) | 36(1) |
| C(21)  | 4872(4)  | 4127(4) | 6606(2) | 37(1) |
| C(22)  | 5921(4)  | 4680(5) | 6805(2) | 50(1) |
| C(23)  | 5987(5)  | 5792(5) | 6758(3) | 63(2) |
| C(24)  | 5014(5)  | 6378(5) | 6506(3) | 62(2) |
| C(25)  | 3965(4)  | 5842(4) | 6309(2) | 49(1) |
| C(26)  | 3909(4)  | 4719(4) | 6362(2) | 40(1) |
| C(31)  | 6350(4)  | 1350(4) | 6382(2) | 34(1) |
| C(32)  | 7603(4)  | 1294(5) | 6303(3) | 52(1) |
| C(33)  | 8263(4)  | 395(5)  | 6512(3) | 66(2) |
| C(34)  | 7691(4)  | -439(5) | 6800(2) | 54(1) |
| C(35)  | 6435(4)  | -416(4) | 6881(2) | 48(1) |
| C(36)  | 5772(4)  | 474(4)  | 6672(2) | 43(1) |
| C(51)  | 326(5)   | 5294(3) | 5673(2) | 50(1) |
| C(52)  | 128(12)  | 6391(6) | 5772(5) | 64(3) |
| C(53)  | 682(12)  | 7188(7) | 5401(5) | 69(4) |
| C(54)  | 1582(12) | 6929(8) | 4975(5) | 74(4) |
| C(55)  | 1912(10) | 5858(8) | 4892(4) | 58(3) |
| C(56)  | 1338(10) | 5060(8) | 5244(5) | 48(3) |
| C(52') | -362(11) | 6271(7) | 5818(5) | 51(3) |

Table 2. Atomic coordinates (x  $10^4$ ) and equivalent isotropic displacement parameters (Å<sup>2</sup>x  $10^3$ ) for g1. U(eq) is defined as one third of the trace of the orthogonalized U<sup>jj</sup> tensor.

| C(53') | -9(12)   | 7225(7) | 5501(5) | 60(4) |
|--------|----------|---------|---------|-------|
| C(54') | 862(11)  | 7159(8) | 5026(5) | 60(4) |
| C(55') | 1410(12) | 6210(8) | 4864(5) | 59(4) |
| C(56') | 1097(11) | 5266(8) | 5187(5) | 47(4) |
| C(61)  | -393(3)  | 3906(4) | 7225(2) | 34(1) |
| C(62)  | -888(4)  | 4784(5) | 7546(2) | 53(1) |
| C(63)  | -1742(5) | 4628(7) | 8029(3) | 71(2) |
| C(64)  | -2109(5) | 3603(7) | 8193(3) | 77(2) |
| C(65)  | -1645(5) | 2739(6) | 7875(3) | 77(2) |
| C(66)  | -777(5)  | 2882(4) | 7395(2) | 53(1) |
|        |          |         |         |       |

| N(1)-C(1)   | 1.368(5) |
|-------------|----------|
| N(1)-C(2)   | 1.467(5) |
| N(1)-H(1)   | 0.83(4)  |
| N(2)-C(1)   | 1.294(5) |
| N(2)-C(3)   | 1.491(5) |
| C(1)-C(11)  | 1.486(5) |
| C(2)-C(21)  | 1.522(6) |
| C(2)-C(3)   | 1.570(6) |
| C(2)-H(2)   | 1.0000   |
| C(3)-C(31)  | 1.519(6) |
| C(3)-H(3A)  | 1.0000   |
| N(3)-C(4)   | 1.369(5) |
| N(3)-C(5)   | 1.463(5) |
| N(3)-H(3)   | 0.90(4)  |
| N(4)-C(4)   | 1.290(5) |
| N(4)-C(6)   | 1.483(5) |
| C(4)-C(12)  | 1.491(5) |
| C(5)-C(51)  | 1.516(6) |
| C(5)-C(6)   | 1.575(5) |
| C(5)-H(5)   | 1.0000   |
| C(6)-C(61)  | 1.522(6) |
| C(6)-H(6)   | 1.0000   |
| C(11)-C(16) | 1.399(5) |
| C(11)-C(12) | 1.415(5) |
| C(12)-C(13) | 1.400(5) |
| C(13)-C(14) | 1.385(6) |
| C(13)-H(13) | 0.9500   |
| C(14)-C(15) | 1.380(6) |
| C(14)-H(14) | 0.9500   |
| C(15)-C(16) | 1.383(6) |
| C(15)-H(15) | 0.9500   |
| C(16)-H(16) | 0.9500   |
| C(21)-C(26) | 1.382(6) |
| C(21)-C(22) | 1.399(6) |
| C(22)-C(23) | 1.379(8) |
| C(22)-H(22) | 0.9500   |
| C(23)-C(24) | 1.392(8) |
| C(23)-H(23) | 0.9500   |

# Table 3. Bond lengths [Å] and angles [°] for g1.

\_\_\_\_

**General Papers** 

| C(24)-C(25)   | 1.388(7)  |
|---------------|-----------|
| C(24)-H(24)   | 0.9500    |
| C(25)-C(26)   | 1.392(7)  |
| C(25)-H(25)   | 0.9500    |
| C(26)-H(26)   | 0.9500    |
| C(31)-C(32)   | 1.383(6)  |
| C(31)-C(36)   | 1.394(6)  |
| C(32)-C(33)   | 1.396(7)  |
| C(32)-H(32)   | 0.9500    |
| C(33)-C(34)   | 1.350(7)  |
| C(33)-H(33)   | 0.9500    |
| C(34)-C(35)   | 1.385(7)  |
| C(34)-H(34)   | 0.9500    |
| C(35)-C(36)   | 1.389(7)  |
| C(35)-H(35)   | 0.9500    |
| C(36)-H(36)   | 0.9500    |
| C(51)-C(56')  | 1.327(8)  |
| C(51)-C(52)   | 1.388(8)  |
| C(51)-C(52')  | 1.454(8)  |
| C(51)-C(56)   | 1.457(8)  |
| C(52)-C(53)   | 1.395(10) |
| C(52)-H(52)   | 0.9500    |
| C(53)-C(54)   | 1.370(11) |
| C(53)-H(53)   | 0.9500    |
| C(54)-C(55)   | 1.382(10) |
| C(54)-H(54)   | 0.9500    |
| C(55)-C(56)   | 1.384(9)  |
| C(55)-H(55)   | 0.9500    |
| C(56)-H(56)   | 0.9500    |
| C(52')-C(53') | 1.409(10) |
| C(52')-H(52') | 0.9500    |
| C(53')-C(54') | 1.385(11) |
| C(53')-H(53') | 0.9500    |
| C(54')-C(55') | 1.359(10) |
| C(54')-H(54') | 0.9500    |
| C(55')-C(56') | 1.392(10) |
| C(55')-H(55') | 0.9500    |
| C(56')-H(56') | 0.9500    |
| C(61)-C(66)   | 1.379(7)  |
| C(61)-C(62)   | 1.389(6)  |

| C(62)-C(63)      | 1.395(8)  |
|------------------|-----------|
| C(62)-H(62)      | 0.9500    |
| C(63)-C(64)      | 1.372(10) |
| C(63)-H(63)      | 0.9500    |
| C(64)-C(65)      | 1.358(10) |
| C(64)-H(64)      | 0.9500    |
| C(65)-C(66)      | 1.399(7)  |
| C(65)-H(65)      | 0.9500    |
| C(66)-H(66)      | 0.9500    |
| C(1)-N(1)-C(2)   | 107.9(3)  |
| C(1)-N(1)-H(1)   | 119(3)    |
| C(2)-N(1)-H(1)   | 122(3)    |
| C(1)-N(2)-C(3)   | 106.3(3)  |
| N(2)-C(1)-N(1)   | 116.3(3)  |
| N(2)-C(1)-C(11)  | 119.4(3)  |
| N(1)-C(1)-C(11)  | 123.7(3)  |
| N(1)-C(2)-C(21)  | 114.8(3)  |
| N(1)-C(2)-C(3)   | 100.2(3)  |
| C(21)-C(2)-C(3)  | 112.3(3)  |
| N(1)-C(2)-H(2)   | 109.7     |
| C(21)-C(2)-H(2)  | 109.7     |
| C(3)-C(2)-H(2)   | 109.7     |
| N(2)-C(3)-C(31)  | 108.6(3)  |
| N(2)-C(3)-C(2)   | 104.2(3)  |
| C(31)-C(3)-C(2)  | 113.9(3)  |
| N(2)-C(3)-H(3A)  | 110.0     |
| C(31)-C(3)-H(3A) | 110.0     |
| C(2)-C(3)-H(3A)  | 110.0     |
| C(4)-N(3)-C(5)   | 107.8(3)  |
| C(4)-N(3)-H(3)   | 114(3)    |
| C(5)-N(3)-H(3)   | 124(3)    |
| C(4)-N(4)-C(6)   | 106.4(3)  |
| N(4)-C(4)-N(3)   | 116.7(4)  |
| N(4)-C(4)-C(12)  | 125.9(3)  |
| N(3)-C(4)-C(12)  | 117.3(3)  |
| N(3)-C(5)-C(51)  | 113.1(3)  |
| N(3)-C(5)-C(6)   | 100.2(3)  |
| C(51)-C(5)-C(6)  | 113.9(3)  |
| N(3)-C(5)-H(5)   | 109.7     |

| C(51)-C(5)-H(5)   | 109.7    |
|-------------------|----------|
| C(6)-C(5)-H(5)    | 109.7    |
| N(4)-C(6)-C(61)   | 112.5(3) |
| N(4)-C(6)-C(5)    | 105.1(3) |
| C(61)-C(6)-C(5)   | 111.7(3) |
| N(4)-C(6)-H(6)    | 109.2    |
| C(61)-C(6)-H(6)   | 109.2    |
| C(5)-C(6)-H(6)    | 109.2    |
| C(16)-C(11)-C(12) | 118.3(3) |
| C(16)-C(11)-C(1)  | 113.7(3) |
| C(12)-C(11)-C(1)  | 128.0(4) |
| C(13)-C(12)-C(11) | 118.3(4) |
| C(13)-C(12)-C(4)  | 116.5(3) |
| C(11)-C(12)-C(4)  | 125.2(3) |
| C(14)-C(13)-C(12) | 122.2(4) |
| С(14)-С(13)-Н(13) | 118.9    |
| C(12)-C(13)-H(13) | 118.9    |
| C(15)-C(14)-C(13) | 119.3(4) |
| C(15)-C(14)-H(14) | 120.4    |
| C(13)-C(14)-H(14) | 120.4    |
| C(14)-C(15)-C(16) | 119.6(4) |
| C(14)-C(15)-H(15) | 120.2    |
| C(16)-C(15)-H(15) | 120.2    |
| C(15)-C(16)-C(11) | 122.2(4) |
| C(15)-C(16)-H(16) | 118.9    |
| C(11)-C(16)-H(16) | 118.9    |
| C(26)-C(21)-C(22) | 118.6(5) |
| C(26)-C(21)-C(2)  | 123.6(4) |
| C(22)-C(21)-C(2)  | 117.8(4) |
| C(23)-C(22)-C(21) | 120.5(5) |
| C(23)-C(22)-H(22) | 119.7    |
| C(21)-C(22)-H(22) | 119.7    |
| C(22)-C(23)-C(24) | 120.3(5) |
| C(22)-C(23)-H(23) | 119.9    |
| C(24)-C(23)-H(23) | 119.9    |
| C(25)-C(24)-C(23) | 119.9(5) |
| C(25)-C(24)-H(24) | 120.1    |
| C(23)-C(24)-H(24) | 120.1    |
| C(24)-C(25)-C(26) | 119.2(5) |
| C(24)-C(25)-H(25) | 120.4    |

| C(26)-C(25)-H(25)   | 120.4    |
|---------------------|----------|
| C(21)-C(26)-C(25)   | 121.6(4) |
| C(21)-C(26)-H(26)   | 119.2    |
| C(25)-C(26)-H(26)   | 119.2    |
| C(32)-C(31)-C(36)   | 117.6(4) |
| C(32)-C(31)-C(3)    | 120.6(4) |
| C(36)-C(31)-C(3)    | 121.7(3) |
| C(31)-C(32)-C(33)   | 121.0(5) |
| C(31)-C(32)-H(32)   | 119.5    |
| C(33)-C(32)-H(32)   | 119.5    |
| C(34)-C(33)-C(32)   | 120.6(4) |
| C(34)-C(33)-H(33)   | 119.7    |
| C(32)-C(33)-H(33)   | 119.7    |
| C(33)-C(34)-C(35)   | 120.0(5) |
| C(33)-C(34)-H(34)   | 120.0    |
| C(35)-C(34)-H(34)   | 120.0    |
| C(34)-C(35)-C(36)   | 119.7(5) |
| C(34)-C(35)-H(35)   | 120.2    |
| C(36)-C(35)-H(35)   | 120.2    |
| C(35)-C(36)-C(31)   | 121.1(4) |
| C(35)-C(36)-H(36)   | 119.4    |
| C(31)-C(36)-H(36)   | 119.4    |
| C(56')-C(51)-C(52') | 120.9(6) |
| C(52)-C(51)-C(56)   | 113.9(6) |
| C(56')-C(51)-C(5)   | 127.8(5) |
| C(52)-C(51)-C(5)    | 128.3(6) |
| C(52')-C(51)-C(5)   | 109.8(5) |
| C(56)-C(51)-C(5)    | 116.7(5) |
| C(51)-C(52)-C(53)   | 122.5(8) |
| C(51)-C(52)-H(52)   | 118.8    |
| C(53)-C(52)-H(52)   | 118.8    |
| C(54)-C(53)-C(52)   | 121.0(8) |
| C(54)-C(53)-H(53)   | 119.5    |
| C(52)-C(53)-H(53)   | 119.5    |
| C(53)-C(54)-C(55)   | 119.6(7) |
| C(53)-C(54)-H(54)   | 120.2    |
| C(55)-C(54)-H(54)   | 120.2    |
| C(54)-C(55)-C(56)   | 119.6(7) |
| C(54)-C(55)-H(55)   | 120.2    |
| C(56)-C(55)-H(55)   | 120.2    |

| C(55)-C(56)-C(51)    | 122.5(7) |
|----------------------|----------|
| C(55)-C(56)-H(56)    | 118.8    |
| C(51)-C(56)-H(56)    | 118.8    |
| C(53')-C(52')-C(51)  | 116.9(7) |
| C(53')-C(52')-H(52') | 121.6    |
| C(51)-C(52')-H(52')  | 121.6    |
| C(54')-C(53')-C(52') | 118.8(8) |
| C(54')-C(53')-H(53') | 120.6    |
| C(52')-C(53')-H(53') | 120.6    |
| C(55')-C(54')-C(53') | 122.4(8) |
| C(55')-C(54')-H(54') | 118.8    |
| C(53')-C(54')-H(54') | 118.8    |
| C(54')-C(55')-C(56') | 119.4(8) |
| C(54')-C(55')-H(55') | 120.3    |
| C(56')-C(55')-H(55') | 120.3    |
| C(51)-C(56')-C(55')  | 120.8(8) |
| C(51)-C(56')-H(56')  | 119.6    |
| C(55')-C(56')-H(56') | 119.6    |
| C(66)-C(61)-C(62)    | 118.1(4) |
| C(66)-C(61)-C(6)     | 122.1(4) |
| C(62)-C(61)-C(6)     | 119.8(4) |
| C(61)-C(62)-C(63)    | 120.6(6) |
| C(61)-C(62)-H(62)    | 119.7    |
| C(63)-C(62)-H(62)    | 119.7    |
| C(64)-C(63)-C(62)    | 120.5(6) |
| C(64)-C(63)-H(63)    | 119.8    |
| C(62)-C(63)-H(63)    | 119.8    |
| C(65)-C(64)-C(63)    | 119.4(5) |
| C(65)-C(64)-H(64)    | 120.3    |
| C(63)-C(64)-H(64)    | 120.3    |
| C(64)-C(65)-C(66)    | 120.7(7) |
| C(64)-C(65)-H(65)    | 119.6    |
| C(66)-C(65)-H(65)    | 119.6    |
| C(61)-C(66)-C(65)    | 120.7(5) |
| C(61)-C(66)-H(66)    | 119.7    |
| C(65)-C(66)-H(66)    | 119.7    |

Symmetry transformations used to generate equivalent atoms:

#### **General Papers**

|       | U <sup>11</sup> | U <sup>22</sup> | U <sup>33</sup> | U <sup>23</sup> | U <sup>13</sup> | U <sup>12</sup> |
|-------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| N(1)  | 24(2)           | 43(2)           | 24(2)           | -2(2)           | 2(1)            | 1(2)            |
| N(2)  | 26(2)           | 32(2)           | 27(2)           | 4(2)            | 1(1)            | 1(1)            |
| C(1)  | 31(2)           | 26(2)           | 26(2)           | 7(2)            | 2(2)            | 2(2)            |
| C(2)  | 28(2)           | 43(3)           | 28(2)           | 1(2)            | -2(2)           | 0(2)            |
| C(3)  | 28(2)           | 40(3)           | 30(2)           | 2(2)            | 0(2)            | -2(2)           |
| N(3)  | 34(2)           | 28(2)           | 26(2)           | 1(2)            | -4(2)           | -1(1)           |
| N(4)  | 26(2)           | 41(2)           | 27(2)           | -2(2)           | -1(1)           | -1(2)           |
| C(4)  | 23(2)           | 34(2)           | 26(2)           | 3(2)            | 1(2)            | -6(2)           |
| C(5)  | 35(2)           | 32(2)           | 33(2)           | -4(2)           | -5(2)           | 5(2)            |
| C(6)  | 29(2)           | 40(3)           | 30(2)           | -6(2)           | -3(2)           | 3(2)            |
| C(11) | 33(2)           | 30(2)           | 22(2)           | 8(2)            | 3(2)            | -5(2)           |
| C(12) | 31(2)           | 29(2)           | 22(2)           | 6(2)            | 0(2)            | -1(2)           |
| C(13) | 37(2)           | 32(3)           | 38(2)           | 6(2)            | -6(2)           | -6(2)           |
| C(14) | 49(2)           | 30(2)           | 41(2)           | -1(2)           | -8(2)           | -13(2)          |
| C(15) | 50(3)           | 27(2)           | 45(2)           | -4(2)           | 3(2)            | -5(2)           |
| C(16) | 44(2)           | 27(2)           | 37(2)           | 2(2)            | 8(2)            | 1(2)            |
| C(21) | 35(2)           | 46(3)           | 30(2)           | -9(2)           | 5(2)            | -2(2)           |
| C(22) | 42(2)           | 61(3)           | 48(3)           | -9(2)           | -3(2)           | -9(2)           |
| C(23) | 56(3)           | 62(4)           | 71(4)           | -20(3)          | -5(3)           | -24(3)          |
| C(24) | 81(4)           | 43(3)           | 62(3)           | -15(3)          | 15(3)           | -11(3)          |
| C(25) | 48(3)           | 45(3)           | 54(3)           | -7(2)           | 14(2)           | 2(2)            |
| C(26) | 41(2)           | 39(3)           | 40(2)           | -7(2)           | 3(2)            | -5(2)           |
| C(31) | 27(2)           | 48(3)           | 28(2)           | 0(2)            | -1(2)           | 0(2)            |
| C(32) | 30(2)           | 62(4)           | 62(3)           | 15(3)           | 1(2)            | 0(2)            |
| C(33) | 33(2)           | 75(4)           | 89(4)           | 28(3)           | -5(3)           | 11(3)           |
| C(34) | 50(3)           | 63(4)           | 48(3)           | 12(3)           | -4(2)           | 16(3)           |
| C(35) | 56(3)           | 53(3)           | 36(2)           | 12(2)           | 2(2)            | 5(3)            |
| C(36) | 33(2)           | 52(3)           | 45(2)           | 12(2)           | 5(2)            | 4(2)            |
| C(51) | 81(3)           | 29(2)           | 41(2)           | -2(2)           | -28(2)          | -4(2)           |
| C(61) | 27(2)           | 48(3)           | 29(2)           | -8(2)           | -4(2)           | 4(2)            |
| C(62) | 44(2)           | 62(3)           | 54(3)           | -33(3)          | 0(2)            | -2(2)           |
| C(63) | 44(3)           | 120(6)          | 50(3)           | -47(4)          | 7(2)            | 1(3)            |
| C(64) | 50(3)           | 137(7)          | 45(3)           | -4(4)           | 14(3)           | 3(4)            |
| C(65) | 71(4)           | 96(5)           | 64(4)           | 24(4)           | 29(3)           | 7(4)            |
| C(66) | 59(3)           | 50(3)           | 51(3)           | 8(2)            | 14(2)           | 17(3)           |

Table 4. Anisotropic displacement parameters  $(Å^2 x \ 10^3)$  for g1. The anisotropic displacement factor exponent takes the form:  $-2\pi^2 [h^2 \ a^{*2} \cup 1^1 + ... + 2 \ h \ k \ a^* \ b^* \cup 1^2 ]$ 

|        | Х        | у        | Z        | U(eq)  |
|--------|----------|----------|----------|--------|
| H(1)   | 3030(40) | 2650(40) | 6710(20) | 30(11) |
| H(2)   | 5169     | 2689     | 7101     | 39     |
| H(3A)  | 6204     | 2857     | 5942     | 39     |
| H(3)   | -60(30)  | 3230(30) | 5290(20) | 27(10) |
| H(5)   | -1084    | 4475     | 6128     | 40     |
| H(6)   | 1039     | 4717     | 6785     | 39     |
| H(13)  | -333     | 1380     | 5344     | 43     |
| H(14)  | 208      | -181     | 4796     | 48     |
| H(15)  | 2253     | -730     | 4773     | 49     |
| H(16)  | 3719     | 269      | 5311     | 43     |
| H(22)  | 6592     | 4286     | 6974     | 60     |
| H(23)  | 6700     | 6161     | 6898     | 76     |
| H(24)  | 5067     | 7143     | 6469     | 75     |
| H(25)  | 3294     | 6236     | 6140     | 59     |
| H(26)  | 3192     | 4351     | 6227     | 48     |
| H(32)  | 8021     | 1876     | 6103     | 62     |
| H(33)  | 9123     | 370      | 6450     | 79     |
| H(34)  | 8149     | -1042    | 6948     | 64     |
| H(35)  | 6029     | -1006    | 7080     | 58     |
| H(36)  | 4910     | 486      | 6727     | 52     |
| H(52)  | -405     | 6607     | 6104     | 77     |
| H(53)  | 432      | 7921     | 5445     | 83     |
| H(54)  | 1976     | 7482     | 4738     | 89     |
| H(55)  | 2530     | 5670     | 4595     | 69     |
| H(56)  | 1614     | 4334     | 5206     | 58     |
| H(52') | -1018    | 6266     | 6114     | 61     |
| H(53') | -363     | 7902     | 5611     | 72     |
| H(54') | 1086     | 7799     | 4805     | 72     |
| H(55') | 2001     | 6191     | 4534     | 70     |
| H(56') | 1439     | 4595     | 5058     | 57     |
| H(62)  | -643     | 5498     | 7435     | 64     |
| H(63)  | -2073    | 5236     | 8246     | 85     |
| H(64)  | -2681    | 3499     | 8527     | 93     |
| H(65)  | -1913    | 2030     | 7980     | 92     |

Table 5. Hydrogen coordinates (  $x \ 10^4$ ) and isotropic displacement parameters (Å<sup>2</sup>x 10<sup>3</sup>) for g1.

| H(66) -449 | 2268 | 7184 | 64 |
|------------|------|------|----|
|------------|------|------|----|

Table 6. Torsion angles [°] for g1.

| C(3)-N(2)-C(1)-N(1)     | 4.3(5)    |
|-------------------------|-----------|
| C(3)-N(2)-C(1)-C(11)    | -167.4(3) |
| C(2)-N(1)-C(1)-N(2)     | 11.1(5)   |
| C(2)-N(1)-C(1)-C(11)    | -177.5(4) |
| C(1)-N(1)-C(2)-C(21)    | 100.7(4)  |
| C(1)-N(1)-C(2)-C(3)     | -19.8(4)  |
| C(1)-N(2)-C(3)-C(31)    | 105.0(3)  |
| C(1)-N(2)-C(3)-C(2)     | -16.7(4)  |
| N(1)-C(2)-C(3)-N(2)     | 21.7(4)   |
| C(21)-C(2)-C(3)-N(2)    | -100.6(4) |
| N(1)-C(2)-C(3)-C(31)    | -96.4(4)  |
| C(21)-C(2)-C(3)-C(31)   | 141.3(3)  |
| C(6)-N(4)-C(4)-N(3)     | -1.3(4)   |
| C(6)-N(4)-C(4)-C(12)    | -177.4(3) |
| C(5)-N(3)-C(4)-N(4)     | 14.0(4)   |
| C(5)-N(3)-C(4)-C(12)    | -169.5(3) |
| C(4)-N(3)-C(5)-C(51)    | 103.1(4)  |
| C(4)-N(3)-C(5)-C(6)     | -18.6(4)  |
| C(4)-N(4)-C(6)-C(61)    | 110.8(4)  |
| C(4)-N(4)-C(6)-C(5)     | -10.9(4)  |
| N(3)-C(5)-C(6)-N(4)     | 17.7(4)   |
| C(51)-C(5)-C(6)-N(4)    | -103.4(4) |
| N(3)-C(5)-C(6)-C(61)    | -104.5(4) |
| C(51)-C(5)-C(6)-C(61)   | 134.4(4)  |
| N(2)-C(1)-C(11)-C(16)   | 33.5(5)   |
| N(1)-C(1)-C(11)-C(16)   | -137.6(4) |
| N(2)-C(1)-C(11)-C(12)   | -144.6(4) |
| N(1)-C(1)-C(11)-C(12)   | 44.3(6)   |
| C(16)-C(11)-C(12)-C(13) | -0.1(5)   |
| C(1)-C(11)-C(12)-C(13)  | 177.9(4)  |
| C(16)-C(11)-C(12)-C(4)  | -178.2(3) |
| C(1)-C(11)-C(12)-C(4)   | -0.2(6)   |
| N(4)-C(4)-C(12)-C(13)   | 142.5(4)  |
| N(3)-C(4)-C(12)-C(13)   | -33.6(5)  |
| N(4)-C(4)-C(12)-C(11)   | -39.4(6)  |
| N(3)-C(4)-C(12)-C(11)   | 144.6(4)  |
| C(11)-C(12)-C(13)-C(14) | 0.5(6)    |
| C(4)-C(12)-C(13)-C(14)  | 178.8(4)  |

| C(12)-C(13)-C(14)-C(15) | -0.7(7)   |
|-------------------------|-----------|
| C(13)-C(14)-C(15)-C(16) | 0.5(7)    |
| C(14)-C(15)-C(16)-C(11) | -0.1(7)   |
| C(12)-C(11)-C(16)-C(15) | -0.1(6)   |
| C(1)-C(11)-C(16)-C(15)  | -178.4(4) |
| N(1)-C(2)-C(21)-C(26)   | -10.1(5)  |
| C(3)-C(2)-C(21)-C(26)   | 103.4(4)  |
| N(1)-C(2)-C(21)-C(22)   | 169.9(4)  |
| C(3)-C(2)-C(21)-C(22)   | -76.6(5)  |
| C(26)-C(21)-C(22)-C(23) | 0.1(7)    |
| C(2)-C(21)-C(22)-C(23)  | -179.9(4) |
| C(21)-C(22)-C(23)-C(24) | -0.6(8)   |
| C(22)-C(23)-C(24)-C(25) | 0.8(8)    |
| C(23)-C(24)-C(25)-C(26) | -0.5(7)   |
| C(22)-C(21)-C(26)-C(25) | 0.2(6)    |
| C(2)-C(21)-C(26)-C(25)  | -179.8(4) |
| C(24)-C(25)-C(26)-C(21) | 0.0(7)    |
| N(2)-C(3)-C(31)-C(32)   | 120.4(4)  |
| C(2)-C(3)-C(31)-C(32)   | -123.9(5) |
| N(2)-C(3)-C(31)-C(36)   | -58.2(5)  |
| C(2)-C(3)-C(31)-C(36)   | 57.4(5)   |
| C(36)-C(31)-C(32)-C(33) | -0.5(8)   |
| C(3)-C(31)-C(32)-C(33)  | -179.2(5) |
| C(31)-C(32)-C(33)-C(34) | -0.5(9)   |
| C(32)-C(33)-C(34)-C(35) | 1.1(9)    |
| C(33)-C(34)-C(35)-C(36) | -0.8(8)   |
| C(34)-C(35)-C(36)-C(31) | -0.2(7)   |
| C(32)-C(31)-C(36)-C(35) | 0.8(7)    |
| C(3)-C(31)-C(36)-C(35)  | 179.5(4)  |
| N(3)-C(5)-C(51)-C(56')  | -15.6(10) |
| C(6)-C(5)-C(51)-C(56')  | 98.0(9)   |
| N(3)-C(5)-C(51)-C(52)   | 165.4(8)  |
| C(6)-C(5)-C(51)-C(52)   | -81.0(9)  |
| N(3)-C(5)-C(51)-C(52')  | 150.1(6)  |
| C(6)-C(5)-C(51)-C(52')  | -96.3(6)  |
| N(3)-C(5)-C(51)-C(56)   | -27.6(7)  |
| C(6)-C(5)-C(51)-C(56)   | 86.0(7)   |
| C(56)-C(51)-C(52)-C(53) | 12.0(15)  |
| C(5)-C(51)-C(52)-C(53)  | 179.3(9)  |
| C(51)-C(52)-C(53)-C(54) | -9.0(18)  |

| C(52)-C(53)-C(54)-C(55)     | 2.6(18)   |
|-----------------------------|-----------|
| C(53)-C(54)-C(55)-C(56)     | -0.5(18)  |
| C(54)-C(55)-C(56)-C(51)     | 4.5(17)   |
| C(52)-C(51)-C(56)-C(55)     | -9.9(15)  |
| C(5)-C(51)-C(56)-C(55)      | -178.7(9) |
| C(56')-C(51)-C(52')-C(53')  | -11.4(15) |
| C(5)-C(51)-C(52')-C(53')    | -178.3(8) |
| C(51)-C(52')-C(53')-C(54')  | 7.0(16)   |
| C(52')-C(53')-C(54')-C(55') | -1.5(19)  |
| C(53')-C(54')-C(55')-C(56') | 0(2)      |
| C(52')-C(51)-C(56')-C(55')  | 9.9(17)   |
| C(5)-C(51)-C(56')-C(55')    | 174.2(9)  |
| C(54')-C(55')-C(56')-C(51)  | -4(2)     |
| N(4)-C(6)-C(61)-C(66)       | -23.5(5)  |
| C(5)-C(6)-C(61)-C(66)       | 94.4(5)   |
| N(4)-C(6)-C(61)-C(62)       | 159.9(4)  |
| C(5)-C(6)-C(61)-C(62)       | -82.2(5)  |
| C(66)-C(61)-C(62)-C(63)     | 0.4(7)    |
| C(6)-C(61)-C(62)-C(63)      | 177.2(4)  |
| C(61)-C(62)-C(63)-C(64)     | -0.2(8)   |
| C(62)-C(63)-C(64)-C(65)     | -0.9(9)   |
| C(63)-C(64)-C(65)-C(66)     | 1.7(10)   |
| C(62)-C(61)-C(66)-C(65)     | 0.3(7)    |
| C(6)-C(61)-C(66)-C(65)      | -176.4(5) |
| C(64)-C(65)-C(66)-C(61)     | -1.4(9)   |
|                             |           |

Symmetry transformations used to generate equivalent atoms:

| D-HA            | d(D-H)  | d(HA)   | d(DA)    | <(DHA) |
|-----------------|---------|---------|----------|--------|
| N(1)-H(1)N(4)   | 0.83(4) | 2.06(4) | 2.791(5) | 147(4) |
| N(3)-H(3)N(2)#1 | 0.90(4) | 2.05(4) | 2.944(5) | 174(4) |

## Table 7. Hydrogen bonds for g1 [Å and °].

Symmetry transformations used to generate equivalent atoms:

#1 x-1/2,-y+1/2,-z+1