Supplementary Material

Synthesis of Florbetapir aza-analogues using chemistry of pyridinium *N*-aminides

Elena Gala^{a,b}, Javier Recio^a, Julio Alvarez-Builla^{a*} and M Luisa Izquierdo^{a*}

^aDepartamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Campus Científico-Tecnológico, 28805 Alcalá de Henares (Madrid), Spain ^bDepartamento de Tecnología Química y Ambiental, Universidad Rey Juan Carlos, 28933 Móstoles (Madrid), Spain Email: julio.alvarez@uah.es mluisa.izquierdo@uah.es

Table of Contents

Table S1. Optimization of the alkylation of aminides 3 and synthesis of acetamides 4	S2
Numbering employed in NMR analysis	S3
Synthesis of alkylating agents	S4
¹ H. ¹³ C and ¹⁹ F NMR of new compounds synthesized	S5
,	

General Papers

1. Table S1. Optimization of the alkylation of aminides 3 and synthesis of acetamides 4

Entry	Alkylating agent	n	Temp.	Time	% (¹ H-NMR estimated)			Catalyst	% 4 (two stops)	
Entry				(min)	3	8	9	Catalyst	76 4 (two steps)	
1	7a			60	54	30	16			
2		7a	h	90 °C	90	16	60	24		
3			Z		120	0	69	31 —	> Pt/C 5 wt. %	28
4			110 °C	30	*	*	*			
5			90 °C	60	67	20	13			
6	7b			10	75	17	8			
7		3	110 °C	20	20	53	27			
8				30	0	64	36 —	> Pt/C 1 wt. %	21	
9			150 °C	20	*	*	*			

*Carbonization of the mixture

2. Numbering employed in NMR analysis

Figure S1. Numbering employed in NMR analysis.

3. Synthesis of alkylating agents

2-{2-[2-(Benzyloxy)ethoxy]ethoxy}ethanol (20)¹

Procedure. Benzyl bromide (6.5 mL, 55 mmol) was added dropwise to a solution of triethylene glycol (7.51 g, 50 mmol) and freshly prepared Ag₂O (17.4 g, 75 mmol) in CH₂Cl₂ (20 mL) at room temperature. The suspension was stirred for 24 h then filtered through Celite. The filtrate was evaporated and the resulting residue was purified by flash chromatography (hexane/ethyl acetate 1:1), to give 2-{2-[2-(Benzyloxy)ethoxy]ethoxy}ethanol **20** (10.5 g, 88 %, 44 mmol) as a colourless oil. ¹H NMR (300 MHz, CDCl₃): δ 7.34-7.26 (5H, m, Ar*H*), 4.56 (2H, s, CH₂Ar), 3.72-3.58 (12H, m, CH₂O), 2.50 (1H, br s, OH) ppm.

1,12-diphenyl-2,5,8,11-tetraoxadodecane 21 was obtained as a secondary product. Colourless oil (0.82 g, 5 %, 2.5 mmol). ¹H NMR (500 MHz, CDCl₃): δ 7.34-7.25 (10H, m, Ar*H*), 4.57 (4H, s, CH₂Ar), 3.69-3.63 (12H, m, CH₂O) ppm. ¹³C NMR (75 MHz, CDCl₃): δ 138.3 (*C*1), 128.3 (*C*3(5)), 127.7 (*C*2(6)), 127.6 (*C*4), 73.2 (*C*H₂Ph), 70.7 (2*C*H₂O), 69.4 (4*C*H₂O) ppm.

Tosylation of poly (ethylene glycol) derivatives

General procedure. Tosyl chloride (10.5 g, 55 mmol) in dry CH_2Cl_2 (50 mL) was added to a solution of the corresponding monobenzylated polyethylene glycol derivative (50 mmol), Et_3N (7.5 mL, 54 mmol) and DMAP (12.2 g, 100 mmol) in dry CH_2Cl_2 (250 mL) at 0 °C, and the mixture was stirred for 2 h at room temperature. After washing with 1 M HCl, then with a saturated aqueous solution of NaHCO₃ and finally with brine, the organic layer was dried (Na₂SO₄) and the solvent evaporated to dryness, to obtain the desired product, which was used in the next step without further purification. Experimental data were consistent with previously reported literature values.

2-[2-(Benzyloxy)ethoxy]ethyl-4-methylbenzenesulfonate (22a). Tosylate **22a** was obtained as an yellow oil (14.9 g, 85 %, 42.5 mmol). ¹H NMR (300 MHz, CDCl₃): δ 7.79 (2H, d, *J* 8.4, *H*2(6)), 7.29 (7H, m, *H*3(5) and Ar*H*), 4.53 (2H, s, *CH*₂-Ar), 4.17 (2H, t, *J* 4.2 Hz, *CH*₂A), 3.67-3.56 (6H, m, *CH*₂B, *CH*₂C and *CH*₂D), 2.40 (3H, s, *CH*₃) ppm. **2-{2-[2-(Benzyloxy)ethoxy]ethoxy}ethyl-4-methylbenzenesulfonate (22b)**. Tosylate **22b** was obtained as an yellow oil (12.0 g, 72 %, 36 mmol). ¹H NMR (300 MHz, CDCl₃): δ 7.77 (2H, d, *J* 8.4, *H*2(6)), 7.33-7.26 (7H, m, *H*3(5) and Ar*H*), 4.54 (2H, s, *CH*₂-Ph), 4.14 (2H, m, *CH*₂A), 3.67 (2H, m, *CH*₂B), 3.62-3.57 (8H, m, *CH*₂C, *CH*₂D, *CH*₂E and *CH*₂F), 2.41 (3H, s, *CH*₃) ppm.

Obtaining of the polyethylene glycol bromides

General procedure. LiBr (24.5 g, 280 mmol) was added to a solution of the corresponding tosylate **22** (28 mmol) in acetone (80 mL) and the mixture refluxed for 6 h. The solution was then cooled and the solvent removed. The resulting residue was suspended in H_2O (80 mL), extracted four times with CH_2Cl_2 (4 x 80 mL) and the layers separated. The combined organic extracts were then dried (Na₂SO₄), filtered and the solvent evaporated to obtain the desired product **7**. Experimental data were consistent with previously reported literature values.

[2-(2-Bromoethoxy)ethoxy]methylbenzene (7a). Derivative **7a** was obtained as a yellow liquid (6.89 g, 95 %, 26.6 mmol). ¹H NMR (300 MHz, CDCl₃): δ 7.31 (5H, m, Ar*H*), 4.55 (2H, s, CH₂Ar), 3.78 (2H, t, *J* 6.3 Hz, CH₂B), 3.66 (2H, m, CH₂C or CH₂D), 3.60 (2H, m, CH₂D or CH₂C), 3.45 (2H, t, *J* 6.3 Hz, CH₂A) ppm.

{2-[2-(2-Bromoethoxy)ethoxy]ethoxy}methylbenzene (7b). Derivative **7b** was obtained as a yellow liquid (7.89 g, 93 %, 26.0 mmol). ¹H NMR (300 MHz, CDCl₃): δ 7.35-7.26 (5H, m, Ar*H*), 4.57 (2H, s, C*H*₂Ar), 3.81 (2H, t, *J* 7.0 Hz, *CH*₂B), 3.70-3.63 (8H, m, *CH*₂C, *CH*₂D, *CH*₂E and *CH*₂F), 3.46 (2H, t, *J* 7.0 Hz, *CH*₂A) ppm.

¹ Bouzide, A.; Sauvé, G. *Tetrahedron Lett.* **1997**, *38*, 5945-5948.

4. ¹H, ¹³C and ¹⁹F NMR of new compounds synthesized.

Figure S7. ¹³C-NMR of product 4b.

Figure S10. ¹H-NMR of mixture of salts 8b and 9b.

Figure S11. ¹H-NMR of product **10a**.

Figure S12. ¹³C-NMR of product **10a**.

Figure S14. ¹³C-NMR of product **10b**.

Figure S16. ¹³C-NMR of product 11a.

Figure S17. ¹H-NMR of product **11b**.

Figure S18. ¹³C-NMR of product **11b**.

Figure S20. ¹³C-NMR of product 12a.

Figure S21. ¹⁹F-NMR of product **12a**.

Figure S22. ¹⁹F-NMR of product **12b**.

Figure S24. ¹³C-NMR of product **12b**.

Figure S25. ¹H-NMR of product **13**.

Figure S26. ¹³C-NMR of product **13**.

Figure S28. ¹³C-NMR of product 14a.

Figure S30. ¹³C-NMR of product **14b**.

Figure S31. ¹H-NMR of product **15a**.

Figure S34. ¹³C-NMR of product **15b**.

Figure S35. ¹H-NMR of product **16a**.

Figure S39. ¹H-NMR of product **18**.

Figure S40. ¹³C-NMR of product 16b.

Figure S43. ¹⁹F-NMR of product **1a**.

Figure S44. ¹⁹F-NMR of product **1b**.

Figure S48. ¹³C-NMR of product **19**.