Supplementary Material # New Schiff bases from 2,5-bis-(butylsulfanyl)-2,3-dihydro-4*H*-pyran-2-carbaldehyde Ekaterina A. Verochkina,* Nadezhda V. Vchislo, and Ludmila I. Larina Siberian Branch of the Russian Academy of Sciences, A. E. Favorsky Institute of Chemistry 1, Favorsky Str., Irkutsk, 664033, Russia Email: kleptsova84@mail.ru ## **Table of Contents** | Figure 1. ¹ H NMR spectrum of compound 3a in CDCl ₃ | S3 | |--|------| | Figure 2. ¹³ C NMR spectrum of compound 3a in CDCl ₃ | S4 | | Figure 3. ¹ H NMR spectrum of compound 3b in CDCl ₃ + CCl ₄ | S5 | | Figure 4. ¹³ C NMR spectrum of compound 3b in CDCl ₃ + CCl ₄ | S6 | | Figure 5. ¹ H NMR spectrum of compound 3c in CDCl ₃ | S7 | | Figure 6. ¹³ C NMR spectrum of compound 3c in CDCl ₃ | S8 | | Figure 7. ¹ H NMR spectrum of compound 3e in CD₃OD | S9 | | Figure 8. ¹³ C NMR spectrum of compound 3e in CD ₃ OD | S10 | | Figure 9. ¹ H NMR spectrum of compound 3f in DMSO | S11 | | Figure 10. ¹³ C NMR spectrum of compound 3f in DMSO | S12 | | Figure 11. ¹ H NMR spectrum of compound 3g in DMSO | S13 | | Figure 12. ¹³ C NMR spectrum of compound 3g in DMSO | \$14 | Page S1 [©]AUTHOR(S) General Papers ARKIVOC 2021, viii, S1-S14 ### **Experimental Section** **General**. The 1 H, 13 C and 15 N NMR spectra were recorded in CDCl₃ solutions at room temperature on Bruker DPX-400 and AV-400 spectrometers (400.13, 100.61 and 40.56 MHz, respectively). 1 H, 13 C and 15 N Chemical shifts (δ in ppm) were measured with accuracy of 0.01, 0.02 and 0.1 ppm, respectively, and referred to TMS (1 H, 13 C) and nitromethane (15 N). Chromato-mass spectrometry analysis was performed on a Shimadzu GCMS-QP5050A mass spectrometer (EI ionization, 70 eV). The IR spectra of the compounds were recorded on a Varian 3100 FT-IR spectrometer with the sample in thin film. Elemental analysis was performed on a Thermo Finnigan Flash series 1112 Elemental analyzer. #### General synthesis of compounds 3a-c, 3e-g: Compounds **3a-c**, **e**: To the solution of **1** (1 mmol, 0.288 g) of compound (**1**) in MeOH or THF was added 1 mmol of amine (**2a-c**) or amino acid **2e** and the mixture was stirred for 1-6 h at room temperature or reflux. The reaction mixture was dried with MgSO₄, the precipitate was filtered off and the solvent was removed in vacuo. The desired imine was obtained as an oil or powder. Compounds **3f**, **g**: To the solution of **1** (1 mmol, 0.288 g) of compound (**1**) in MeOH was added 1 mmol of amino acid methyl ester hydrochloride (**2f**, **g**) and NaOH (1 mmol) and the mixture was stirred for 4 h at room temperature. The reaction mixture was dried with MgSO₄, the precipitate was filtered off and the solvent was removed in vacuum. The desired imine was obtained as an oil. Page S2 [©]AUTHOR(S) 10