
DOI: https://doi.org/10.24820/ark.5550190.p011.481 Page 273  ©AUTHOR(S) 

 

A Platinum Open Access Journal 

for Organic Chemistry 
Review 

Free to Authors and Readers DOAJ Seal Arkivoc 2021, part i, 273-328 

 

Applications of pyrazolone in multicomponent reactions for the synthesis of 
dihydropyrano[2,3-c]pyrazoles and spiro-pyrano[2,3-c]pyrazoles in aqueous medium  

 
Biplob Borah, Kartikey Dhar Dwivedi, and L. Raju Chowhan* 

 

Centre for Applied Chemistry, School of Applied Material Science, Central University of Gujarat, 

Gandhinagar-382030, India 

Email: rchowhan@cug.ac.in   

 

Received   01-28-2021 Accepted   03-17-2021 Published on line   03-31-2021 

 

Abstract 
Pyrazolone is an important class of heterocyclic compounds with numerous applications in the fields of 
organic/material/pharmaceutical chemistry, food/textile industry and cosmetics. Because of these 
importances, the synthesis of biologically active complex molecules by employing pyrazolone has emerged. 
Dihydropyrano[2,3-c]pyrazoles and spiro-pyrano[2,3-c]pyrazoles are synthesized from pyrazolone and hold 
huge potential in the field of medicinal chemistry because of their wide-ranging biological activities. This 
review article will summarize the up to date advances on the application of pyrazolone in multicomponent 
reactions for the synthesis of dihydro- and spiro-pyrano[2,3-c]pyrazoles in aqueous medium.   
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1. Introduction  
 

Due to increasing apprehension about environmental issue, the design and development of a chemical 

transformation that directs the efficient and practical synthesis of molecular complexity has emerged as one 

of the most significant ambitions for chemists in industry and academia.1 In recent years, compared to other 

step-wise synthetic methods which involved separation, complex purification techniques and utilizes large 

amount of solvent, reagent, multicomponent reactions (MCRs) have increasingly gained favor as they avoid 

the waste of solvent, reagent, and product. Multicomponent reactions (MCRs) have provided a useful and 

important influential implement for the construction of organic compounds and biologically active molecules, 

in which three or more reactants are mixed in a single operation and result in the formation of a product with 

the creation of several new bonds.2,3 From the viewpoint of green chemistry, organic synthesis /organic 

transformation via multicomponent reaction (MCRs) should need to be designed in such a way that utilizes 

alternative pathway and materials which are not only environmentally friendly but also be easily available 

anywhere in bulk quantities at very cheap price.4 Also, one of the major risks to the environment is due to the 

chemical waste produced during a chemical process, which is mainly generated from hazardous organic 

solvents, and therefore, avoiding or minimizing the use of hazardous organic solvents by using green ones is a 

critically important goal of modern synthetic chemistry.5,6 In this context, Breslow7 rediscovered the use of 

water as a green solvent in organic reactions in the 1980s, and currently, the utilization of water as a reaction 

medium in catalytic process for the synthesis of either natural products or pharmaceutically active compounds 

has received considerable attention due to the abundantly available, non-hazardous, non-flammable, unique 

redox stability and its cheap nature.8,9,10   

 Heterocyclic compounds are important bioactive molecules found in nature. Due to their characteristic 

properties, heterocyclic compounds have a significant application in the pharmaceutical industry. Among 

heterocyclic compounds, pyrazolones are important compounds with numerous applications in the fields of 

synthetic organic chemistry, material science, medicinal and pharmaceutical chemistry, food industry, textile 

industry, cosmetics products, chemical industry, and also as powerful synthon for generating biologically 

active heterocycles.11 The medicinal application of pyrazolone includes antipyretic activity (A, B, H) and 
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analgesic activity (A, B, F),12,13,14,15 antibacterial (G),16 anti-inflammatory activity (H), antitumor activity (D),17,18 

neuroprotective and cardiovascular agent (C),19,20,21 antidepressant activity,22 phosphodiesterase inhibitors 

(E),23 p38 inhibitors (I)24 and so on (Figure 1).  

 

 
Figure 1. Bioactive molecules bearing pyrazolone moiety.  

 

Besides these, pyrazolones are widely used as dyes for various applications in the food, textile, 

photographic, and cosmetics industries.25 Pyrazolones were also applied as the solvent for extraction of metal 

ions,26 for analytical purpose,27 in the preparation of azo colourants,28 ligands in complexes with catalytic 

activity,29 and the synthesis of rare earth metal complexes with interesting photophysical properties.30 

Pyrazolones were used in vinyl polymerization of norbornene;31 in polymeric membrane electrode for 

lanthanoid ion-selective solvent polymeric membrane electrode;27 and thermal oxidative degradation of 

polypropylene.31 They were also used in the study of photochromism phenomena.32,33,34 As a consequence of 

this, derivatization of other complex molecules from pyrazolone structure in an aqueous medium for providing 

enhanced reactivity and activities has emerged. Dihydropyrano[2,3-c]pyrazole and spiro[indoline-3,4-

pyrano[2,3-c]pyrazoles] are the type of those compounds which are synthesized from pyrazolone over the last 

decades and holds huge potential in the field of medicinal chemistry because of their wide-ranging biological 

activities such as- anti-bacterial (J),35 anti-HIV,36 insecticidal, anti-infective,37 anti-platelet, anti-fungal (M),38,39 

anti-cancer (N),40,41 anti-microbial (K),42 antioxidant activity (O),43 molluscicidal agent (P),44 analgesics,45 anti-

inflammatory (Q)46,47 and it also serves as potential inhibitors of human Chk1 kinase (L) (Figure 2).48,49 
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Figure 2. Medicinally privileged dihydropyrano[2,3-c]pyrazoles and spiro[indoline-3,4-pyrano[2,3-c]pyrazoles.  

 

 In view of these importances, a vast array of synthetic approaches has been reported over the last 

decades for the synthesis of dihydropyrano[2,3-c]pyrazole and spiro[indoline-3,4-pyrano[2,3-c]pyrazole] 

derivatives by employing conventional as well as green method involving two-component, three-component, 

four-component reactions. In 2013, a review article systematized the literature data on the synthesis of 

pyrano[2,3-c]pyrazole starting from 1905.50 In 2018, another review article summarized the synthetic methods 

for the pyrano[2,3-c]pyrazoles.51 However, still there are a lot of publications that are untouched and a surge 

of investigation is required for the synthesis and medicinal aspects of these heterocycles. Therefore, we have 

emphasized the synthetic pathways of pyrano[2,3-c]pyrazoles mainly on the utilization of the aqueous 

medium. The foremost aim of this review is to summarize the up to date advances in the applications of 

pyrazolone as starting material as well as in situ generated synthon in multicomponent reactions (MCRs) for 

the synthesis of dihydropyrano[2,3-c]pyrazoles and spiro[indoline-3,4-pyrano[2,3-c]pyrazole] derivatives in the 

aqueous medium. To furnish a complete and understandable overview, the article is classified according to 

catalyst-free, base-catalyzed, acid-catalyzed, nanoparticle catalyzed, salt catalyzed synthesis.    

 

 

2. Synthesis of Dihydropyrano[2,3-c]pyrazoles and Spiro-pyrano[2,3-c]pyrazoles in the 
Aqueous Medium 

 

2.1 Catalyst free synthesis 

From the viewpoint of green chemistry, the design and development of an efficient, clean, and novel reaction 

procedure for the synthesis of diverse structural scaffolds under the catalyst-free condition with maximum 

yield and minimum cost by using inexpensive, non-toxic solvents or starting materials has reached an 

exceptional level in the last decades. Based on that in 2011, Zhao et al. reported a non-catalytic method for 

the preparation of spiro[indoline-3,4-pyrano[2,3-c]pyrazoles] derivatives 4 in 84-95% yield by the three-



Arkivoc 2021, i, 273-328   Borah, B. et al. 

 

 Page 277  ©AUTHOR(S) 

component reaction of substituted isatin 1, malononitrile 2, and 3-methyl-1-phenyl-1H-pyrazole-5(4H)-one 3 

using water as a reaction medium (Scheme 1).52 The reaction was carried out at different reaction condition by 

changing the temperature of the model reaction from 20 °C to 90 °C and it was found that by increasing the 

reaction temperature, the yield of the product was increased and it was excellent at 60 °C which indicates the 

best condition for the reaction. The methodology has several benefits such as mild reaction conditions, shorter 

reaction time, simple work-up procedure, eco-friendly and environmental friendliness. 

 

 
 

Scheme 1. Catalyst-free synthesis of spiro[indoline-3,4-pyrano[2,3-c]pyrazoles] 4 in aqueous medium. 

 

 In 2012, Mandha and his co-worker described another catalyst-free protocol for the four-component 

synthesis of pyrano[2,3-c]pyrazole derivatives in good yield via the one-pot reaction of several aromatic 

aldehydes, malononitrile, hydrazine hydrate, and ethyl acetoacetate in presence of aqueous ethanol as a 

reaction media at a temperature ranging from 25 °C to 100 °C (Scheme 2).53 But upon replacing the hydrazine 

hydrate with phenylhydrazine, the same four-component reaction strategy to accomplish the pyrano[2,3-

c]pyrazole derivatives 8 was not observed. However, the preparation of 3-methyl-1-phenyl-1H-pyrazole-5(4H)-

one 3 from an initial condensation of ethyl acetoacetate and phenylhydrazine and its treatment with aldehyde 

5 and malononitrile 2, was found to lead to the desired product in very good yield. Similarly, the preparation 

of 3-methyl-1H-pyrazol-5(4H)-one 6 alone also results in a better yield of product 7 as compared to the 

corresponding one-pot four-component reaction. Furthermore, the reaction of substituted isatin, or 9-

fluorenone, or terephthalaldehyde with malononitrile, and pyrazolone under the same reaction afforded the 

corresponding product- spiro[indoline-3,4-pyrano[2,3-c]pyrazoles], spiro[fluorine-9,4-pyrano[2,3-c]pyrazole], 

and 4,4/-(1,4-phenylene)bis(6-amino-3-methyl-1,4-dihydropyrano[2,3-c]pyrazole-5-carbonitrile) in high yield 

respectively. 
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Scheme 2. Three-component catalyst-free synthesis of dihydro- and spiro-pyrano[2,3-c]pyrazole derivatives. 
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 A very efficient and simple strategy for the one-pot synthesis of several dihydropyrano[2,3-c]pyrazole 

derivatives 12 in 64-84% yield from in situ generated pyrazolone has been developed by Zonouz et al. in 2012. 

The synthesis involves the four-component condensation reaction of aromatic aldehyde 10, malononitrile 2, 

hydrazine hydrate 9, and dimethyl acetylene dicarboxylate 11 in presence of water at 50 °C–60 °C for 1.5-2.5 

hours without employing any other catalyst or additives (Scheme 3).54 Isolation of product by simple work-up 

procedure and use of water makes this protocol very convenient in terms of synthetic efficiency as well as 

from a green chemistry point of view. 

 

 
 

Scheme 3. Water mediated synthesis of dihydropyrano[2,3-c]pyrazoles 12 from in situ generated pyrazolone. 

 

 Another achievement has been gained by Bihani et al. reported that the practical catalyst-free four-

component condensation reaction of several aromatic aldehydes 10, malononitrile 2, hydrazine hydrate 9, and 

ethyl acetoacetate 13 refluxed in water afforded the corresponding dihydropyrano[2,3-c]pyrazole derivatives 

14 in good to excellent yield after 2-6 hours (Scheme 4).55 The reaction can proceed through the initial 

formation of pyrazolone 16 from the condensation of ethyl acetoacetate 13 and hydrazine hydrate 9 which 

undergo tautomerization to give the intermediate 17. The intermediate 17 then undergo Michael addition 

with the in situ generated α-cyanocinnamonitrile 15, followed by intramolecular cyclization, that results in the 

formation of the desired product 14. They also develop another catalyst-free synthetic method for the 

preparation of alkyl-substituted dihydropyrano[2,3-c]pyrazole derivatives 7 from aliphatic aldehyde 5, 

malononitrile 2, hydrazine hydrate 9, and ethyl acetoacetate 13 in presence of aqueous ethanol as the solvent 

under reflux condition. The product was formed in 70-84% yield within 3-10 hours (Scheme 5). 



Arkivoc 2021, i, 273-328   Borah, B. et al. 

 

 Page 280  ©AUTHOR(S) 

 
 

Scheme 4. Synthesis of dihydropyrano[2,3-c]pyrazole derivatives 14 in boiling water. 

 

 
 

Scheme 5. Synthesis of alkyl-substituted dihydropyrano[2,3-c]pyrazoles 7 in aqueous ethanol. 

 

Chenxia et al.56 reported that the one-pot three-component reaction of various substituted aldehyde 

10, malononitrile 2, and 1-phenyl-3-(trifluoromethyl)-1H-pyrazol-5(4H)-one 18 under aqueous medium 

without using any catalyst afforded the dihydropyrano[2,3-c]pyrazole derivatives 19 at 90 °C in 3-5 hours 

(Scheme 6). By applying this atom economical procedure, a total of 11 derivatives were synthesized in 78-90% 

yield. The plausible mechanism for this transformation involves the initial Knoevenagel condensation reaction 

between aryl aldehyde 10 and malononitrile 2, which result in the formation of α-cyanocinnamonitrile 15, that 

can then experiences nucleophilic attack from the pyrazolone 18 to produce the intermediate 20. In the final 

step, the intermediate 20 undergo intramolecular cyclization followed by subsequent isomerization to form 

the desired product 19.   
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Scheme 6. Preparation of dihydropyrano[2,3-c]pyrazoles 19 from trifluoromethyl pyrazolones. 

 

 In 2013, the research group of Zou developed an ultrasound irradiated catalyst-free one-pot procedure 

for the construction of dihydropyrano[2,3-c]pyrazole derivatives 22 in 70-95% yield by the reaction of several 

substituted aldehyde 5, malononitrile 2, hydrazine hydrate 9, and ethyl-3-oxo-3-alkylpropanoate 21 in water 

medium in 13-37 minutes (Scheme 7).57 The reaction was initially carried out in different solvents including 

ethanol, methanol, acetonitrile, THF, dioxane, and water under ultrasound irradiation as well as under high 

stirring conditions. However, the best results were obtained when water was used as a reaction medium 

under ultrasound irradiation as compared to conventional stirring conditions. Also, the reaction temperature 

was reduced when the reaction was performed in the ultrasound irradiation. By applying this methodology, 11 

compounds were synthesized in good to excellent yield. 

 

 

Scheme 7. Ultrasound-assisted synthesis of dihydropyrano[2,3-c]pyrazoles 22.  
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A simple straightforward catalyst-free procedure for the one-pot four-component reaction of 

substituted isatin 23, malononitrile 2, hydrazine hydrate 9, and dialkyl acetylene dicarboxylate 24 for the 

construction of spiro[indoline-3,4-pyrano[2,3-c]pyrazole] derivatives 25 in 80-91% yield by using aqueous 

ethanolic solution under reflux condition within 4 minutes has been accomplished by Pore et al. (Scheme 8).58 

The mechanistic reaction pathway for this transformation starts with the in situ formation of pyrazolone 26 

from the exothermic reaction of hydrazine hydrate 9 and dialkyl acetylene dicarboxylate 24. On the other 

hand, the presence of water in the reaction mixture leads to the generation of carbanion of malononitrile as 

well as activation of the carbonyl carbon of 23, thereby facilitates the Knoevenagel condensation of 23 with 

malononitrile 2, and generates the intermediate 27. The 1,2-nucleophilic addition of pyrazolone 26 to 

intermediate 27, followed by subsequent ring closure yield the final product 25. 

 

 
 

Scheme 8. Four-component synthesis of spiro[indoline-3,4-pyrano[2,3-c]pyrazole] derivatives 25. 
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In 2014, Yang et al.59 demonstrated a microwave-assisted one-pot strategy for the synthesis of 

dihydropyrano[2,3-c]pyrazoles 31 and 32 from aromatic aldehydes 30, malononitrile 2, and pyrazolone 29 in a 

water medium (Scheme 9). They firstly prepared the pyrazolone 29 from the reaction of ethyl acetoacetate 21 

and hydrazines 28 under microwave oven (300 W) at 80 °C in 2 min. After that, malononitrile 2 and aromatic 

aldehydes 30 were added swiftly with pyrazolone 29 and irradiated successively at 80 °C for 3 min. Total 19 

compounds were obtained by this method and the yield of the corresponding product 31 and 32 were high 

ranging from 80-95% and 48-86% respectively. 

 

 
 

Scheme 9. Microwave-assisted synthesis of dihydropyrano[2,3-c]pyrazoles 31 & 32.  

 

An efficient, regio, and chemoselective one-pot four-component reaction for the construction of 

dihydropyrano[2,3-c]pyrazole derivatives 35 & spiro[indoline-3,4-pyrano[2,3-c]pyrazoles] 36 has been 

developed by Koohshari and his group. The catalyst-free domino treatment of various substituted aryl 

aldehyde 10 or substituted isatin 1, malononitrile 2, hydrazine 34, and dialkyl-3-oxopentanedioate 33 in 

presence of aqueous ethanolic solution at 60 °C afforded the corresponding product 35 and 36 in good yield 

after 12 hours (Scheme 10).60   

Recently, the combination of PEG and water as a sustainable reaction medium for promoting the 

multicomponent synthesis of dihydropyrano[2,3-c]pyrazoles has been established by Survase et al.61 The 

synthesis of several derivatives of dihydropyrano[2,3-c]pyrazoles 37 from aldehydes 10, malononitrile 2, and 

pyrazolone 16 was first carried out by employing different solvent system including toluene, DMF, DMSO, 

water, PEG-600 and in different ratio of PEG-water solvent system at room temperature. From the optimized 

reaction condition, it was found that the PEG-water solvent system was the best choice of reaction medium 

for the preparation of dihydropyrano[2,3-c]pyrazole derivatives, and products were obtained in good to 

excellent yield ranging from 80-91% (Scheme 11).              

 



Arkivoc 2021, i, 273-328   Borah, B. et al. 

 

 Page 284  ©AUTHOR(S) 

 
 

Scheme 10. Domino reaction in aqueous ethanol to access dihydropyrano[2,3-c]pyrazoles 35 and spiro-

pyrano[2,3-c]pyrazoles 36. 

 

 

 
 

Scheme 11. PEG-H2O promoted one-pot synthesis of dihydropyrano[2,3-c]pyrazoles 37. 

 

2.2 Acid-catalyzed synthesis 

In 2010, Heravi et al62. reported the synthesis of several dihydropyrano[2,3-c]pyrazole 38 from the one-pot 

condensation reaction of aromatic aldehydes 10, malononitrile 2, and pyrazolone 3 by using preyssler type 

heteropolyacid H14[NaP5W30O110] as a reusable green solid acid catalyst in aqueous medium under reflux 

condition. The reaction was also carried out in presence of methanol as the solvent (Scheme 12). By using 

water as the solvent, the product could be isolated in 80-95% yield within 45-60 minutes whereas the reaction 

in presence of methanol proceeded after 50-65 minutes, and the desired product obtained in 84-93% yield. 

Due to the utilization of inexpensive, reusable, non-toxic, highly hydrolytic, heterogeneous, thermally stable, 

and an environmentally benign solid acid catalyst, the methodology offers significant advantages and high 

product substrate scope. 
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Scheme 12. Acid-catalyzed synthesis of dihydropyrano[2,3-c]pyrazoles 38 in water as well as in methanol. 

 

The same group has also developed another acid-catalyzed one-pot methodology for the synthesis of 

dihydropyrano[2,3-c]pyrazole derivatives 38 via the reaction of substituted aldehydes 10, malononitrile 2, and 

pyrazolone 3 in presence of p-toluene sulfonic acid (p-TSA) as a catalyst in an aqueous medium at reflux 

temperature for 45-55 minutes. Initial optimization for the reported methodology under a different solvent 

system like- water, ethanol, dichloromethane, chloroform, and also under solvent-free condition revealed that 

the reaction performed in presence of water afforded the desired product in 80-95% yield (Scheme 13).63  

 

 
 

Scheme 13. Three-component p-TSA catalyzed synthesis of dihydropyrano[2,3-c]pyrazoles 38. 

 

Reddy and co-workers described that the synthesis of dihydropyrano[2,3-c]pyrazole derivatives 37 in 

80-91% yield proceeded through the three-component reaction of aldehydes 10, malononitrile 2, and 

pyrazolone 16 by using montmorillonite K-10 as a reusable green acid catalyst in aqueous ethanol medium at 

room temperature for 5-6 hours (Scheme 14).64 By applying this eco-friendly, column chromatography-free 

methodology 13 derivatives were synthesized in good to excellent yield. 

 

 
 

Scheme 14. K-10 catalyzed synthesis of dihydropyrano[2,3-c]pyrazoles 37. 
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In 2016, Zhou et al.65 demonstrated morpholine triflate (MorT) as a Lewis acid catalyst in one-pot four-

component synthesis of pyrano[2,3-c]pyrazole derivatives 37 from several aldehydes 5, malononitrile 2, 

hydrazine 39 and ethyl acetoacetate 13 in aqueous ethanolic solution under refluxing condition for 7-12 hours. 

For optimizing reaction condition, the reaction was performed in presence of different ammonium triflates 

and different solvent system such as MeOH, EtOH, DMF, THF, H2O, and EtOH/H2O. However, the reaction in 

presence of aqueous ethanol afforded the product in the highest yield. The mechanism suggested by authors 

for this transformation involves the in situ formation of pyrazolone 41 from ethyl acetoacetate 13 and 

hydrazine 39 activated by MorT. Then Knoevenagel condensation reaction between aldehyde 5 with 

malononitrile 2 took place in presence of the catalyst to form α-cyanocinnamonitrile that can undergo Michael 

addition with pyrazolone 41 resulting in the formation of the final product 40, after cyclization and 

tautomerization (Scheme 15).   

 

 
 

Scheme 15. Morpholine triflate mediated construction of dihydropyrano[2,3-c]pyrazoles 40. 

 

Treatment of several substituted aryl aldehydes 10, malononitrile 2, hydrazine hydrate 9, and ethyl 

acetoacetate 13 in presence of an aqueous solution of boric acid as a green catalytic system was found to lead 

to the formation of dihydropyrano[2,3-c]pyrazole derivatives 14 in 70-85% after 10-20 minutes at 70 °C 

(Scheme 16).66 The interaction of B(OH)3 with water released the H+ in an aqueous solution that could 

effectively catalyze the reaction. Initially, the ethyl acetoacetate 13 was activated by H+ and then hydrazine 9 

attacked the carbonyl group of the activated ethyl acetoacetate and removed one molecule of H2O. Then, 

another NH2 group of hydrazine attacked the next carbonyl group of ethyl acetoacetate to give 5-methyl-2,4-

dihydro-pyrazol-3-one 16 after removing one molecule of EtOH. In the subsequent step, the reaction of an 

activated aromatic aldehyde with malononitrile afforded the arylidene malononitrile 15, which can then 

undergo tandem Michael addition-cyclization reaction with 5-methyl-2,4-dihydro-pyrazol-3-one 16 and 
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yielded the final product 14. By applying this tandem one-pot four-component protocol total of 17 compounds 

were synthesized in the highest yield.  

 

 
 

Scheme 16. Boric acid catalyzed four-component synthesis of dihydropyrano[2,3-c]pyrazoles 14. 

 

A multicomponent domino procedure has been developed for the synthesis of several thioethers 

linked dihydropyrano[2,3-c]pyrazole derivatives 45 from the reaction of aldehydes 10, malononitrile 2, ethyl 4-

chloro-3-oxobutanoate 42, phenylhydrazine 43, and 5-phenyl-1,3,4-oxadiazole-2-thiol 44 in presence of 

Montmorillonite K-10 as a reusable green catalyst in aqueous ethanol under the stirring condition at 70 °C for 
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3 hours (Scheme 17).67 The reaction was also investigated in solvent-free as well as catalyst-free condition. 

However, products were obtained in low yield with impurities. With this eco-compatible, operational 

simplicity, and environmentally friendly approach, 14 compounds in 80-89% yields were obtained.  

 

 
 

Scheme 17. Synthesis of thioether linked dihydropyrano[2,3-c]pyrazoles 45 in presence of K-10. 

 

          Recently, Govindaraju and their team introduced citric acid as a biodegradable and reusable catalyst that 

facilitates the one-pot multi-component strategy for the construction of several dihydropyrano[2,3-c]pyrazole 

derivatives 47 in good to excellent yield (90-97%) from simple starting material including several aldehydes 5, 

4-nitrophenylacetonitrile 46, ethyl acetoacetate 13 and hydrazine 34 in presence of water as green solvent at 

25°C (Scheme 18).68 The methodology offers several benefits like simple workup procedure, mild reaction 

condition, green catalyst, high yield, and also eco-friendly protocol. 

 

 
 

Scheme 18. Citric acid-catalyzed one-pot synthesis of dihydropyrano[2,3-c]pyrazoles 47.  

 

2.3 Base catalyzed synthesis 

In 2008 Vasuki et al.69 reported a single step construction of dihydropyrano[2,3-c]pyrazole derivatives 7 in 

good to excellent yield ranging from 66-94% through the four-component reaction of substituted aldehyde 5, 

malononitrile 2, hydrazine 34, and ethyl acetoacetate 13 by employing piperidine as a base catalyst in aqueous 

medium at room temperature within 5-10 minutes (Scheme 19). Not only the aromatic aldehydes but also 

heteroaromatic as well as aliphatic aldehydes were well tolerated by this method and the yields of the 

products depended on the substitution in different positions of the aldehydes group. All halogenated 

substrates afforded the final product in quantitative yield.    
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Scheme 19. Secondary amine catalyzed synthesis of dihydropyrano[2,3-c]pyrazoles 7.  

 

            A very simple procedure for the one-pot synthesis of several spiro[indoline-3,4-pyrano[2,3-c]pyrazole] 

derivatives 49 in 80-97% yield via the four-component condensation reaction of substituted isatin 48, 

malononitrile 2, β-ketoesters 21, and hydrazine hydrate 34 in the water at room temperature for 5 hours by 

using secondary amine piperidine as a base catalyst has been discovered by Ahadi’s group in 2010 (Scheme 

20).70 The investigations carried out for the reaction mechanism involving the initial formation of pyrazolone 

from 21 and 34 that can then react with the Knoevenagel adduct produced from the reaction of isatin 48 and 

malononitrile 2, followed by an intramolecular cyclization and tautomerization after which the desired product 

49 was obtained. 

 

 
 

Scheme 20. Construction of spiro[indoline-3,4-pyrano[2,3-c]pyrazoles] 49 by using piperidine as a base 

catalyst. 

 

            Later, the research group of Kiyani introduced sodium benzoate as an efficient base catalyst that could 

effectively catalyze the one-pot condensation reaction of aromatic aldehyde 10, malononitrile 2, hydrazine 

hydrate 39, and ethyl acetoacetate 13 in presence water as a solvent at room temperature for 30-75 minutes, 

leads to the formation of dihydropyrano[2,3-c]pyrazole derivatives 50 in 78-94% yield (Scheme 21).71 Use of 

water as reaction medium, mild reaction condition, short reaction time, easy isolation, wide substrate scope 

makes this protocol very significant in terms of synthetic efficiency as well as green chemistry point of view. 
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Scheme 21. Sodium benzoate as the base catalyst for the synthesis of dihydropyrano[2,3-c]pyrazoles 50. 

 

            In 2013, Ilovaisky’s group reported the “on water” one-pot three-component reaction of aromatic 

aldehyde 10, malononitrile 2, and pyrazolone 16 in presence of sodium hydroxide (NaOH) as a basic catalyst at 

100 °C for the synthesis of several pyrano[2,3-c]pyrazole derivatives 37 in 85-98% yield (Scheme 22).72 The 

methodology displays several advantages such as mild reaction conditions, short reaction time, wide substrate 

scope, high yield of the product, eco-friendly as well as environmentally friendly protocol. By applying this 

green synthetic protocol, seven compounds possessing electron-rich as well as electron-poor substituents 

were synthesized in good to excellent yield mainly ranging from 85-98% within a very short reaction time.  

 

 
 

Scheme 22. Sodium hydroxide catalyzed three-component synthesis of dihydropyrano[2,3-c]pyrazoles 37. 

            

            In 2015, Waghmare and his co-workers reported 1,4-diazabicyclo[2.2.2]octane (DABCO) catalyzed one-

pot construction of dihydropyrano[2,3-c]pyrazole derivatives 7 from the four-component reaction of several 

substituted aldehyde 5, malononitrile 2, hydrazine hydrate 9, and ethyl acetoacetate 13 in aqueous medium 

under refluxing condition within 10-25 minutes (Scheme 23).73 Not only the aryl aldehydes but also heteroaryl 

aldehydes were well tolerated by this green strategy and a total of 20 compounds were synthesized in good to 

excellent yield.  
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Scheme 23. DABCO catalyzed preparation of dihydropyrano[2,3-c]pyrazole 7. 

 

         Another achievement has been gained by Chougala and co-workers in 2016, by applying 4-

dimethylaminopyridine (DMAP) as a base catalyst for the construction of several coumarins based 

dihydropyrano[2,3-c]pyrazoles 53 in 82-92% yield from the one-pot reaction of substituted chromene-

carbaldehyde 51, malononitrile 52, hydrazine hydrate 9 and ethyl acetoacetate 13 in presence aqueous 

ethanolic solution at room temperature under the stirring condition for 2-3 hours (Scheme 24).74 A plausible 

mechanism that explains this transformation starts with the initial formation of coumarin based Knoevenagel 

product 54 from the DMAP catalyzed reaction of substituted coumarin carbaldehyde 51 and active methylene 

compound 52 that can then experiences nucleophilic attack from the –OH form of pyrazolone 55 produced in 

situ in the reaction from ethyl acetoacetate and hydrazine. In the next step, intramolecular cyclization and 

tautomerization yield the corresponding coumarin-based dihydropyrano[2,3-c]pyrazoles 53 (Scheme 25). 

 

 
 

Scheme 24. Synthesis of dihydropyrano[2,3-c]pyrazole 53 from chromene-carbaldehyde. 
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Scheme 25. Plausible mechanism for the formation of 53. 

 

           Jayant P Sonar and his co-workers have demonstrated the triethanolamine catalyzed one-pot synthesis 

of a series of dihydropyrano[2,3-c]pyrazole derivatives 37 in 81-93% yield from the three-component coupling 

reaction of several substituted aldehyde 10, malononitrile 2, and pyrazolone 16 by using the aqueous 

ethanolic solution as a solvent under refluxing condition for 12-20 minutes (Scheme 26).75 Aldehydes 10 

possessing several electron-withdrawing and electron-donating groups affect the yield of the product and 

aromatic as well as heteroaromatic aldehydes afforded the product in excellent yield. The same author also 

reported the utilization of sodium lactate as an efficient base catalyst for the construction of 

dihydropyrano[2.3-c]pyrazoles 37 in aqueous ethanolic solution and the reaction starts with the four 

component treatment of several substituted aldehydes 10, malononitrile 2, ethyl acetoacetate 13 and 

hydrazine hydrate 9 at room temperature (Scheme 27).76 The methodology offers several advantages and by 

using this method 12 compounds were synthesized in 74-94% yield within 10-20 minutes. 



Arkivoc 2021, i, 273-328   Borah, B. et al. 

 

 Page 293  ©AUTHOR(S) 

 
 

Scheme 26. Rapid access to dihydropyrano[2,3-c]pyrazoles 37 in triethanolamine. 

 

 

 
 

Scheme 27. Sodium lactate catalyzed synthesis of dihydropyrano[2,3-c]pyrazole 37. 

 

2.4 Organocatalyzed synthesis 

In 2010, the research group of Reddy demonstrated that the utilization of glycine as a non-toxic 

organocatalyst in the four-component reaction of aldehyde 10, malononitrile 2, hydrazine hydrate 9, and ethyl 

acetoacetate 13 in presence of water as a solvent at 25 °C, afforded the corresponding dihydropyrano[2,3-

c]pyrazole derivatives 37 in 85-95% yield after 5-20 minutes (Scheme 28).77 When the reaction was carried out 

in presence of different solvents like DMF, DCM, EtOH, MeOH; the yield of the product did not increase. 

However, when the polarity of the solvent system was increased by using water as a solvent the yield of the 

product increased even though the low amount of the catalyst was used. From the optimization, it was clear 

that the yield of the product increased as the polarity of the solvent increases. Hence, water was chosen as 

the best solvent system and the reaction has proceeded very smoothly with all aromatic as well as 

heteroaromatic aldehydes, and a total of 16 compounds were synthesized.  

 

 
 

Scheme 28. Glycine as an organocatalyst for the synthesis of dihydropyrano[2,3-c]pyrazole 37. 



Arkivoc 2021, i, 273-328   Borah, B. et al. 

 

 Page 294  ©AUTHOR(S) 

        A very convenient organocatalytic approach for the construction of alkyl and aryl-substituted 

dihydropyrano[2,3-c]pyrazoles 7 in 65-93% yield was developed by Mecadon’s group. The methodology 

involves the four-component treatment of aldehyde 5, malononitrile 2, hydrazine hydrate 34, and ethyl 

acetoacetate 13 in a water medium under the influence of 10 mol% of L-proline for 10-20 minutes of reflux. 

The catalytic activity of L-proline for this transformation was compared by using other catalysts like- γ-

alumina, basic alumina, and KF- alumina. When the reaction was carried out in γ-alumina, basic alumina, and 

KF-alumina under the same reaction condition, the products were obtained in 42-68%, 45-62%, and 30-59% 

respectively which was comparatively very low in comparison to L-proline due to which L-proline was found to 

be the best catalyst for this reaction (Scheme 29).78 

 

 
 

Scheme 29. L-proline catalyzed synthesis of aryl/alkyl-substituted dihydropyrano[2,3-c]pyrazoles 7. 

 

          Another successful organocatalytic method for the one-pot construction of dihydropyrano[2,3-c]pyrazole 

derivatives 37 has been accomplished by Siddekha et al. in 2011. In this regard, imidazole was introduced as 

an efficient organocatalyst that effectively catalyzed the four-component reactions of aromatic aldehyde 10, 

malononitrile 2, hydrazine hydrate 9, and ethyl acetoacetate 13 in presence of an aqueous medium at 80°C for 

20-30 minutes (Scheme 30).79 Several electron-withdrawing and electron-donating groups in aldehydes affect 

the yield of the product. The electron-withdrawing group increases the yield of the product whereas the 

electron-donating group decreases the yield. A series of a total of 10 compounds in 85-90% yields were 

obtained by using this eco-friendly protocol. The mechanism for these transformations starts with the 

protonation of ethyl acetoacetate 13 by imidazole, followed by an intermolecular attack by hydrazine hydrate 

9 and subsequent loss of water, and intramolecular nucleophilic attack by -NH2 group on the carbonyl carbon 

afforded the 5-methyl-2,4-dihydro-pyrazol-3-one 16. Similarly, protonation of aldehyde by imidazole and 

reaction with 3-imino-acrylonitrile may afford arylidene malononitrile 15. The next addition of 16 to 15 in the 

presence of imidazole followed by rearrangement yielded the final product 37.   
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Scheme 30. Imidazole catalyzed one-pot construction of dihydropyrano[2,3-c]pyrazole 37. 

 

           In 2013, Yu et al.80 reported the synthesis of several spiro[indoline-3,4-pyrano[2,3-c]pyrazole] 

derivatives 56 by the reaction of substituted isatin 48, malononitrile 2, hydrazine 28, and β-keto esters 21 in 

the presence of secondary amine L-proline as an organocatalyst in the water at 80 °C for 10-30 minutes. All 

halogenated and alkyl substitutes on isatin rings smoothly worked under the optimized reaction condition and 

result in the formation of the product in 78-92% yield (Scheme 31).    
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Scheme 31. L-proline catalyzed four-component synthesis of spiro[indoline-3,4-pyrano[2,3-c]pyrazole] 56. 

 

           Prasanna et al. reported L-proline catalyzed one-pot reaction of dialkyl acetylene dicarboxylates 24, 

malononitrile 52, β-ketoesters 21, and hydrazines 57 by using water as a solvent for the construction of a 

series of dihydropyrano[2,3-c]pyrazole derivatives 58 under refluxing condition (Scheme 32).81 This “on water” 

chemodivergent reaction proceeded through the initial formation of pyrazolone 59 from hydrazine and β-

ketoesters that can undergo Michael addition with acetylene dicarboxylates 24 under the influence of L-

proline followed by a subsequent [1,3] hydrogen shift, afforded the intermediate 60. In the next step, a second 

Michael addition between the enone moiety of intermediate 60 and malononitrile 52 was taken place, which 

after a 6-exo-dig annulation step with concomitant tautomerization yields the final product 58 (Scheme 33). 

 

 
 

Scheme 32. L-proline as organocatalyst in water to access dihydropyrano[2,3-c]pyrazole 58. 
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Scheme 33. Proposed mechanism for the formation of dihydropyrano[2,3-c]pyrazole 58. 

 

          Wang Liju et al.,(2014) developed an ultrasound-assisted methodology for the four-component reaction 

of substituted isatin 1, malononitrile 2, dialkyl acetylene dicarboxylates 24, and substituted hydrazine 57 by 

using L-proline as a catalyst in an aqueous ethanolic medium (v/v, 1:1), was found to leads to the formation of 

spiro[indoline-3,4-pyrano[2,3-c]pyrazoles] 61 in 84-92% yield at room temperature (Scheme 34).82 A plausible 

mechanism that explains the formation of 61 begins with the initial formation of pyrazolone derivatives 62 

from the exothermic reaction of 57 with 24 that can then produces the enolate intermediate 63 in presence of 

L-proline. Then, the Michael addition reaction between the intermediate 63 with Knoevenagel product 64 that 

was generated from substituted isatin 1 and malononitrile 2 in presence of L-proline, was took place, leads to 

the intermediate 65. In the final step, a subsequent cyclization and tautomerization afforded the final product 

61 from intermediate 65 (Scheme 35). 

 

 
 

Scheme 34. Ultrasound-assisted L-proline catalyzed synthesis of spiro[indoline-3,4-pyrano[2,3-c]pyrazole] 61. 
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Scheme 35. The suggested mechanism that explains the formation of 61. 

 

         Brahmachari and Banerjee established the four component preparation of dihydropyrano[2,3-c]pyrazole 

derivatives 37 from the in situ generated pyrazolone and arylidene malononitrile by employing one-pot 

reaction of several substituted aryl aldehyde 10, malononitrile 2, hydrazine hydrate 9, and ethyl acetoacetate 

13 with urea as an organocatalyst in aqueous ethanolic solution at room temperature for 8-12 hours (Scheme 

36).83 The methodology exhibit a vast array of benefits in terms of environmentally friendly synthesis as well 

as large-scale industrial synthesis. 

 

 
 

Scheme 36. Urea catalyzed synthesis of dihydropyrano[2,3-c]pyrazoles 37 from in situ generated pyrazolone. 

 

          In 2015, Vekariya et al.84 reported the one-pot construction of dihydropyrano[2,3-c]pyrazole derivatives 

37 from the four component condensation reaction of various derivatives of aldehyde 10, malononitrile 2, 

hydrazine hydrate 9, and ethyl acetoacetate 13 by employing thiourea dioxide (TUD) as an organocatalyst in 
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presence of water as solvent at 80 °C within 30-50 minutes (Scheme 37). By introducing TUD as an 

inexpensive, non-volatile, reusable catalysts, a total of 24 compounds were synthesized and the products were 

formed by a simple workup procedure in 86-96% yield. All substituted aryl and heteroaryl aldehydes were 

smoothly providing the reaction and the rate of the reactions were depends on the substitutions.  

 

 
 

Scheme 37. Thiourea dioxide catalyzed synthesis of dihydropyrano[2,3-c]pyrazoles 37. 

 

          In 2017, Ahad and Farooqui demonstrated that the multicomponent domino reaction of aldehydes 10, 

malononitrile 2, and pyrazolone 16 in presence of aspartic acid as an efficient organocatalyst in aqueous 

ethanol afforded the dihydropyrano[2,3-c]pyrazole derivatives 14 in 84-91% yield at room temperature 

(Scheme 38a).85 In 2019, Khandebharad et al. has synthesized several dihydropyrano[2,3-c]pyrazole 

derivatives 37 in good to excellent yield from the four-component reaction of aldehydes 10, malononitrile 2, 

ethyl acetoacetate 13, and hydrazine hydrate 9 by using sodium gluconate as recyclable organocatalyst in 

presence of water as a reaction medium under reflux of 15-45 minutes (Scheme 38b).86 All aryl, as well as 

heteroaryl aldehydes with electron-withdrawing and electron releasing group on the different position, were 

smoothly worked under the optimized reaction condition and a total of 13 compounds were synthesized in 85-

92% yield. In the same year, several novel dihydropyrano[2,3-c]pyrazole derivatives 67 in 80-90% yield has 

been synthesized by Chate et al. from the reaction of aldehydes 10, malononitrile 2, ethyl acetoacetate 13, 

and isoniazid 66 in the presence of 2-aminoethanesulfonic acid (taurine) as a bio-organic catalyst in water 

medium at 70 °C (Scheme 38c).87 Another achievement has also been gained by Valiey et al. in 2019, who 

synthesized and fully characterized the melamine modified chitosan (Cs-Pr-Me) materials as a reusable 

bifunctional organocatalyst, and then the efficacy of the catalyst was tested by applying it in the four-

component reaction of aldehydes 10, malononitrile 2, hydrazine hydrate 39 and ethyl acetoacetate 13 in the 

aqueous ethanolic solution as the solvent under reflux condition. Under this condition, several 

dihydropyrano[2,3-c]pyrazole derivatives 50 was prepared within 25 to 50 minutes and the prepared catalyst 

was found to be very effective for this transformation. A total of 32 compounds were synthesized by this 

methodology in 70-92% yields (Scheme 38d).88 
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Scheme 38. Synthesis of several dihydropyrano[2,3-c]pyrazoles by using different types of organocatalyst.  
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2.5 Nanoparticle catalyzed synthesis 

Mecadon et al.89 described the utilization of γ-alumina as an efficient recyclable catalyst in the four-

component reaction of aromatic aldehyde 5, malononitrile 2, hydrazine hydrate 9, and ethyl acetoacetate 13 

for the preparation of dihydropyrano[2,3-c]pyrazole derivatives 7 in presence of water as a solvent under 

refluxing condition within 35-90 minutes (Scheme 39). All aliphatic and aromatic aldehydes were smoothly 

undergoing the reaction and the yield of the product ranges from 61-90%. The reaction was also performed in 

presence of other catalysts like KF-alumina, basic alumina and it was found that the rate of the reaction was 

faster and the yield of the product was increases when γ-alumina was used as a catalyst. The orders of 

catalytic activity of the tested catalyst for this transformation are as follows- γ-alumina > KF-alumina > basic 

alumina. 

 

 
 

Scheme 39. γ-alumina mediated synthesis of dihydropyrano[2,3-c]pyrazole 7. 

 

           Sachdeva and Saroj in 2013 reported the preparation of pyrano[2,3-c]pyrazole derivatives 69 employing 

a four-component condensation reaction of aromatic aldehyde 10, ethyl cyanoacetate 68, hydrazine hydrate 

9, and ethyl acetoacetate 13 under the influence of zinc oxide nanoparticle (ZnO NPs) as a catalyst in aqueous 

medium at room temperature (Scheme 40).90 The reaction was also carried out in heating condition. However, 

the yield of the product was not much increased as compared to the yield of the product obtained at room 

temperature. By applying this method, 10 compounds were synthesized in 85-90% yield and the catalyst was 

reused up to 3 cycles with negligible loss in catalytic property.   

 

 
 

Scheme 40. Zinc catalyzed synthesis of dihydropyrano[2,3-c]pyrazoles 69. 

 

           In 2013, the research group of Niknam reported the three-component synthesis of dihydropyrano[2,3-

c]pyrazole derivatives 38 from the one-pot reaction of aromatic aldehyde 10, malononitrile 2, and pyrazolone 

3 by introducing silica bonded N‐propylpiperazine sodium n‐propionate (SBPPSP) as an efficient 
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heterogeneous catalyst and aqueous ethanol as a solvent under refluxing condition within very short reaction 

time (Scheme 41).91 The simple work-up procedure, mild reaction condition, reusability of the catalyst, wide 

substrate scope, environmentally as well as eco-friendly nature is the advantage of this method and by using 

this economically viable method, 10 compounds were synthesized and all the halogenated substrate afforded 

the product in high yield. 

 

 
 

Scheme 41. Magnetic nanoparticle catalyzed synthesis of dihydropyrano[2,3-c]pyrazoles 38. 

 

             A very simple straightforward method for the construction of several dihydropyrano[2,3-c]pyrazole 

derivatives 14 in 93-97% yield has been developed by Mahmoud et al. in 2014 by introducing magnetic Fe3O4 

nanoparticles catalyzed one-pot four-component reaction of aryl aldehyde 10, malononitrile 2, hydrazine 34 

and ethyl acetoacetate 13 in water as a solvent at room temperature (Scheme 42).92 The effect of a catalyst on 

the reaction was also examined by using three types of the catalyst including Fe3O4, and Fe3O4 nanoparticle. 

However, the best yield of the product was obtained in presence of Fe3O4 NPs due to the greater diffusion of 

Fe3O4 nanoparticles in the reaction mixture and the catalyst could be easily recovered by using an external 

magnetic field and the possibility of recyclability was examined for the reaction. From the experiment, it was 

found that the catalyst could be very efficient for further reaction, leads to a similar yield to the fresh one and 

the methodology also displays flexibility in tuning the molecular complexity and diversity in a single step.  

 

 
 

Scheme 42. Iron oxide nanoparticle catalyzed synthesis of dihydropyrano[2,3-c]pyrazole 14 in water. 
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           The synthesis of dihydropyrano[2,3-c]pyrazole derivatives 38 can also be obtained via the three-

component reaction of aromatic aldehyde 10, malononitrile 2, and pyrazolone 3 using silica sodium carbonate 

(SSC) as a novel catalyst in aqueous ethanolic solution at 80 °C for 25-35 minutes (Scheme 43).93 The catalyst 

was prepared from the reaction of silica chloride with sodium hydrogen carbonate and it was fully 

characterized by FT-IR, XRD, XRF, TG-DTA analysis. The efficacy of the catalyst was found to be very high in this 

reaction and the catalyst could be recovered simply from the reaction mixture. By applying this simple, mild 

protocol 10 compounds were synthesized with several electron-poor and electron-rich groups in 86-94% yield. 

 

 

Scheme 43. Preparation of SSC and its application in the synthesis of pyrano[2,3-c]pyrazole 38. 

 

           In 2014, Pradhan et al.94 reported a one-pot four-component condensation reaction of dialkyl acetylene 

dicarboxylates 24, malononitrile/ethyl cyanoacetate 52, ethyl acetoacetate 13, and substituted hydrazine 39 

for the preparation of a series of dihydropyrano[2,3-c]pyrazole derivatives 70 in 85-97% yield by introducing 

nanocrystalline CuFe2O4 as an efficient catalyst in presence of water that served as a reaction medium at 60 °C 

for 2-3 hours (Scheme 44). The reaction was carried out in presence of different solvents as well as a catalytic 

system. However, CuFe2O4 was found to be the best catalyst, and water was chosen as the best solvent for this 

methodology. By using water as the solvent, the protocol worked well for a vast array of substrate scope and a 

total of 11 compounds were synthesized in good to excellent yield. The several advantages displayed by this 

methodology include mild reaction condition, short reaction time, eco-friendly, easily recoverable and 

reusable catalyst, environmentally friendly protocol, broad substrate scope, simple workup procedure etc. 

 

 
 

Scheme 44. Synthesis of dihydropyrano[2,3-c]pyrazole 70 using nano CuFe2O4 in water. 
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            Moeinpour and Khojastehnezhad have demonstrated a polyphosphoric acid-functionalized silica-coated 

nanocatalyst, namely [Ni0.5Zn0.5Fe2O4@SiO2–PPA] for the preparation of dihydropyrano[2,3-c]pyrazole 

derivatives 37 proceeding through the four component one-pot reaction of aryl aldehyde 10, malononitrile 2, 

hydrazine 34, and ethyl acetoacetate 13 using water as a solvent at room temperature (Scheme 45a).95 They 

also synthesized cesium carbonate supported on hydroxyapatite-coated Ni0.5Zn0.5Fe2O4 magnetic 

nanoparticles Ni0.5Zn0.5Fe2O4@Hap-Cs2CO3 and the catalytic activity of the catalyst was tested in the one-pot 

reaction of aromatic aldehyde 10, malononitrile 2, hydrazine 28, and ethyl acetoacetate 21 in aqueous 

ethanolic solution at room temperature. It was found that the synthesized catalyst could effectively catalyze 

the reaction in a very short time and results in the formation of several dihydropyrano[2,3-c]pyrazole 

derivatives 71 in 88-94% yield (Scheme 45b).96  

         

 
 

Scheme 45. Construction of dihydropyrano[2,3-c]pyrazoles 37 and 71 using two different nanocatalysts. 

 

             In 2015, Saha et al.97 reported the use of ZrO2 nanoparticle as a heterogeneous and reusable catalyst in 

the one-pot reaction of various derivatives of aryl aldehyde 10, malononitrile 2, hydrazines 39, and ethyl 

acetoacetate 13 by introducing aqueous ethanolic solution as a solvent for the preparation of 

dihydropyrano[2,3-c]pyrazole derivatives 50 at room temperature within 2-10 minutes (Scheme 46). To 

compare the catalytic activity of ZrO2 in this transformation, the reaction was performed in presence of other 

catalysts like Et3N, L-proline, piperidine, meglumine, γ-alumina; but most of the reaction required a higher 

temperature and not environmentally friendly, also the yield of the product was not satisfactory due to which 

the utilization of ZrO2 provides best alternatives to the reported catalytic system in terms of product yield, 

reaction time as well as green chemistry point of view.  

 

 

mailto:Ni0.5Zn0.5Fe2O4@Hap-Cs2CO3
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Scheme 46. Zirconium oxide catalyzed preparation of dihydropyrano[2,3-c]pyrazoles 50. 

 

          In 2015, the research group of Soleimani’s prepared magnetic Fe3O4@SiO2 core-shell nanoparticle as a 

heterogeneous catalyst and fully characterized by FT-IR, powder X-ray diffraction, dynamic light scattering, 

and transmission electron microscopy. The catalytic activity of the prepared catalyst was tested for the four-

component reaction of aromatic aldehyde 10, malononitrile 2, hydrazine 34, and ethyl acetoacetate 13 using 

the aqueous ethanolic solution as a solvent at 70 °C and was found to be very efficient that leads to the 

construction of several dihydropyrano[2,3-c]pyrazole derivatives 37 in 80-94% yield. All electron-withdrawing 

group, as well as the electron-donating group on different positions of the aromatic ring, were successfully 

transformed into the corresponding product in a very short reaction time (Scheme 47).98 

 

 

 
 

Scheme 47. Synthesis of dihydropyrano[2,3-c]pyrazoles 37 developed by Ebrahim. 

 

           At the same time, Yadav and Khurana described the synthesis of silver nanoparticle from water extract of 

Cinnamomum Tamala leaf, and the synthesized silver nanoparticle was utilized as a catalyst for the formation 

of pyrano[2,3-c]pyrazole derivatives 14 from the four-component reaction of aryl aldehyde 10, malononitrile 

2, hydrazine 28 and ethyl acetoacetate 13 in aqueous medium at room temperature for 10-30 minutes 

(Scheme 48).99 By using this green method, twelve compounds were synthesized in high yield ranging from 88-

95%. They also synthesized several dihydropyrano[2,3-c]pyrazole derivatives 38 in 89-93% by using 

phenylhydrazine 28a (R = Ph) instead of hydrazine hydrate 28b (R = H) at 60 °C within 25-35 minutes.         
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Scheme 48. Silver NPs catalyzed one-pot construction of dihydropyrano[2,3-c]pyrazoles 14 & 38. 

 

            A simple and highly efficient methodology that described the construction of several dihydropyrano[2,3-

c]pyrazole derivatives 37 from in situ generated pyrazolone was introduced by Javad et al. in 2016. Preyssler-

heteropoly acid (H14NaP5W30O120) supported silica-coated NiFe2O4 magnetic nanoparticles (NiFe2O4@SiO2-

Preyssler, shortened as NFS-PRS) was prepared in this regard and the catalytic activity was tested by 

employing it in the reaction of aldehydes 10, malononitrile 2, ethyl acetoacetate 13, and hydrazine hydrate 34 

under the influence of water as solvent at room temperature (Scheme 49).100 The prepared catalyst was found 

to be very suitable for the construction of 25 derivatives of pyrano[2,3-c]pyrazole in high yield. 

 

 
 

Scheme 49. Heteropoly acid-functionalized NPs in the preparation of dihydropyrano[2,3-c]pyrazoles 37. 

 

            A very efficient procedure for the synthesis of dihydropyrano[2,3-c]pyrazole derivatives 12 in 83-93% 

yield from the one-pot condensation reaction of aromatic aldehyde 10, malononitrile 2, hydrazine hydrate 9, 

and dimethyl acetylenedicarboxylate 11 by using nanocrystalline ZnZr4(PO4)6 ceramics as an efficient 

heterogeneous catalyst in aqueous medium at room temperature for 30-42 minutes has been discovered by 

Javad’s group (Scheme 50).101 
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Scheme 50. Construction of several dihydropyrano[2,3-c]pyrazoles 12 by using nano-ZnZr4(PO4)6.  

 

           In 2016, Maddila et al. reported an ultrasound-assisted one-pot four-component reaction of aryl 

aldehyde 10, malononitrile 2, hydrazine hydrate 9, and ethyl acetoacetate 13 or dimethyl 

acetylenedicarboxylate 11 for the construction of several dihydropyrano[2,3-c]pyrazole derivatives 14 & 12 in 

presence of manganese doped zirconia (Mn/ZrO2) as a catalyst and aqueous ethanolic solution as a solvent at 

room temperature (Scheme 51).102 Under the standard reaction conditions, a variety of aryl aldehydes bearing 

both electron-releasing and electron-withdrawing groups are worked well and have apparently no obvious 

effect on the product yields as well as on the reaction time, and afforded the pyrano[2,3-c]pyrazole derivatives 

in good to excellent yield. 

 

 

 
 

Scheme 51. Ultrasound-assisted synthesis of dihydropyrano[2,3-c]pyrazoles 14 & 12. 

 

            A nano-structured diphosphate (Na2CaP2O7) as an efficient catalyst has been synthesized by Maleki et 

al. and applied in the synthesis of several dihydropyrano[2,3-c]pyrazole derivatives 37 in 86-92% yield within 

10-20 minutes and spiro[indoline-3,4-pyrano[2,3-c]pyrazole] derivatives 72 in 74-91% yield after 35-70 

minutes from the reaction of substituted aldehyde 10/isatin 1, malononitrile 2, ethyl acetoacetate 13 and 

hydrazine hydrate 9 in presence of water as reaction medium under reflux condition (Scheme 52).103 They also 

developed the three-component synthesis of dihydropyrano[2,3-c]pyrazole derivatives 38 in 80-93% yield by 
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the reaction of aldehydes 10, malononitrile 2, and pyrazolone 3 under the same reaction condition for 10-20 

minutes.  

 

 
 

Scheme 52. Nanostructured diphosphate catalyzed synthesis of several pyrano[2,3-c]pyrazoles 37, 72 & 38. 

 

           In 2017, Fatahpour et al. reported the successful application of Ag/TiO2 nano-thin films as an eco-

compatible, robust, and reusable heterogeneous catalyst for the one-pot preparation of several pyrano[2,3-

c]pyrazole derivatives 37 via the one-pot four-component condensation reaction of several aromatic 

aldehydes 10, malononitrile 2, hydrazine hydrate 9 and ethyl acetoacetate 13 using the aqueous ethanolic 

solution as a solvent at 70 °C (Scheme 53).104 The products could be obtained by a simple work-up procedure 

without using any chromatographic technique in high yield within a very short reaction time. 

 

 
 

Scheme 53. Nano-thin films catalyzed preparation of dihydropyrano[2,3-c]pyrazoles 37. 
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           In the same year, Ghorbani-Vaghei and his co-workers developed a novel magnetic Fe3O4@SiO2 

nanoparticle supported ionic liquid (Fe3O4@SiO2@piperidinium benzene‐1,3‐disulfonate) catalyzed 

condensation reaction of various derivatives of aryl/heteroaryl aldehyde 5, malononitrile 2, hydrazine hydrate 

34, and ethyl acetoacetate 13 by using water as a solvent for the one-pot construction of several 

dihydropyrano[2,3-c]pyrazole derivatives 7 under heating condition (Scheme 54).105 The catalyst was firstly 

prepared and fully characterized and then its effectiveness was established by applying it in the synthesis of 

dihydropyrano[2,3-c]pyrazole derivatives. By applying this method, 16 compounds possessing various 

substituents were synthesized in good to excellent yield ranging from 90-98%. 

 

 
 

Scheme 54. Ionic liquid functionalized MNPs for the construction of dihydropyrano[2,3-c]pyrazoles 7.  

 

          Another achievement has been gained by Zakeri et al. in the same year by developing phosphoric acid-

functionalized graphene oxide (GO-PO3H2-II) as a carbon-based heterogeneous nanocatalyst that could 

effectively catalyze the four-component reaction of several substituted aryl aldehyde 10, malononitrile 2, 

hydrazine 39, and ethyl acetoacetate 13 using water as a solvent under refluxing condition and leads to the 

construction of dihydropyrano[2,3-c]pyrazole derivatives 50 in 45-90% yield (Scheme 55).106 

 

 
 

Scheme 55. Preparation of dihydropyrano[2,3-c]pyrazole 50 in presence of carbon-based nanocatalyst. 

 

        In 2018, Rahman and his group has reported the synthesis of vitamin B1 functionalized Fe2O3@SiO2 

nanoparticle as an efficient, heterogeneous organo-nanocatalyst that could be applied in the reaction of aryl 

aldehyde 10 or substituted isatin 1, malononitrile 2, hydrazine hydrate 9, and ethyl acetoacetate 13 by using 

the aqueous ethanolic solution as a solvent for the one-pot construction of various dihydropyrano[2,3-

c]pyrazole derivatives 37 & spiro[indoline-3,4-pyrano[2,3-c]pyrazole derivatives 72 under the stirring condition 

at room temperature (Scheme 56).107 
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Scheme 56. Vitamin B1 functionalized MNPs for the construction of pyrano[2,3-c]pyrazole 37 & 72. 

 

       In 2020, Mohtasham and Gholizadeh demonstrated the extraction of natural mesoporous silica from 

horsetail plant as support for the preparation of H3PW12O40 immobilized on aminated epibromohydrin 

functionalized Fe3O4@SiO2 nanoparticles (Fe3O4@ SiO2‑EP‑NH‑HPA) that could be applied as a heterogeneous 

nanocatalyst in the one-pot four-component construction of several dihydropyrano[2,3-c]pyrazole derivatives 

37 from the reaction of aryl/heteroaryl aldehyde 10, malononitrile 2, hydrazine hydrate 9 and ethyl 

acetoacetate 13 by using water as a solvent at room temperature (Scheme 57).108 By applying this operational 

simplicity, eco-friendly, non-toxic, environmentally friendly protocol, twenty compounds possessing both 

electron-withdrawing groups as well as electron-donating groups were synthesized in 89-98% yield.  

 

 
 

Scheme 57. Heteropoly acid-functionalized NPs in the synthesis of dihydropyrano[2,3-c]pyrazole 37. 

 

2.6. Salt catalyzed synthesis 

In 2013, Dandia and co-workers have demonstrated an ultrasound-assisted one-pot synthesis of 

spiro[indoline-3,4-pyrano[2,3-c]pyrazole] derivatives 73 in 84-97% yield from the three-component reaction of 

substituted isatin 23, malononitrile/ethyl cyanoacetate 52, and pyrazolone 3 by using cerium ammonium 

nitrate (CAN) as a catalyst in an aqueous medium for 8-20 minutes (Scheme 58).109 Substituents on the C-5 
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position of isatin affect the yield of the product and this environmentally friendly protocol lead to the 

construction of a total of 12 compounds by simple workup procedure in high yield. 

 

 
 

Scheme 58. Ultrasound-assisted salt catalyzed synthesis of spiro[indoline-3,4-pyrano[2,3-c]pyrazoles] 73. 

 

          In the same year, Kumar et al. reported another salt catalyzed one-pot reaction of aldehyde 5, 

malononitrile 2, hydrazine hydrate 9, and ethyl acetoacetate 13 by using tetraethylammonium bromide 

(TEABr) as a catalyst and water as a solvent under reflux condition for the preparation of dihydropyrano[2,3-

c]pyrazole derivatives 7 in 68-90% yield (Scheme 59).110 

 

 
 

Scheme 59. Salt catalyzed synthesis of dihydropyrano[2,3-c]pyrazole 7. 

 

         The research group of Konakanchi developed a one-pot four-component strategy for the construction of 

pyrano[2,3-c]pyrazole derivatives 38 in 88-98% yield via ultrasound-assisted condensation reaction of several 

substituted aromatic aldehyde 10, malononitrile 2, and pyrazolone 3 by using sodium fluoride (NaF) as a 

catalyst in aqueous methanol at room temperature for 5-10 minutes (Scheme 60).111  The reaction can proceed 

through the Knoevenagel condensation of aldehydes and malononitrile, Michael's addition of pyrazolone with 

Knoevenagel product followed by cyclization and tautomerization reaction. 
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Scheme 60. Ultrasound-assisted synthesis of dihydropyrano[2,3-c]pyrazole 38 in presence of NaF. 

 

         Recently, Kiyani and his groups discovered the utilization of sodium ascorbate as an efficient, 

environmentally benign heterogeneous catalyst for the one-pot four-component cyclo condensation reactions 

of several aldehydes 10, malononitrile 2, hydrazine hydrate 9, and ethyl acetoacetate 13 in presence of water 

as a reaction medium under reflux of 2-25 minutes and the catalytic activity of the reported catalyst was found 

to be very successful in the transformation of the reactant into the corresponding dihydropyrano[2,3-

c]pyrazole derivatives 37. The methodology displays several advantages like- use of readily available reactants, 

operational simplicity, easy isolation of product, green reaction media, use of inexpensive and non-toxic 

catalyst, eco-friendly protocol, etc (Scheme 61).112 The reaction mechanism for this transformation begins 

with the initial formation of pyrazolone from the reaction of hydrazine hydrate and ethyl acetoacetate that 

can then undergoes Michael addition with the in situ generated arylidene malononitrile from the Knoevenagel 

condensation reaction of aldehydes with malononitrile under the influence of sodium benzoate. In the final 

step, an intramolecular cyclization followed by tautomerization afforded the desired product. 

 

 
 

Scheme 61. Synthesis of pyrano[2,3-c]pyrazole 37 using sodium ascorbate from in situ generated pyrazolone. 
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2.7 Phase Transfer Catalyst (PTC) mediated synthesis 

In 2005, Tong-Shou Jin et al. reported the synthesis of several dihydropyrano[2,3-c]pyrazole derivatives 38 via 

the three-component reaction of aromatic aldehyde 10, malononitrile 2, and pyrazolone 3 by using 

hexadecyltrimethylammonium bromide (HTMAB) as a phase transfer catalyst (PTC) in aqueous medium at 85-

90 °C in 79-92% yield. All aromatic aldehydes bearing electron-poor or electron-rich substituents on different 

positions of the ring are well reacted under the optimization condition and smoothly provide the 

corresponding product 38 in good to excellent yield. However, the reaction cannot proceed in the case with 

aliphatic aldehydes due to the low activity in comparison to highly reactive aromatic aldehydes (Scheme 

62a).113 Also, the treatment of aromatic aldehydes 10, malononitrile 2, and pyrazolone 3 in presence of p-

dodecylbenesulfonic acid (DBSA) in an aqueous medium at 60 °C afforded the desired dihydropyrano[2,3-

c]pyrazolone 38 in 82-94% yield. It is pertinent to note that all aromatic aldehydes were well tolerated by this 

method in the successful transformation to corresponding product 38. However, aldehyde possessing 

dimethylamino group on the 4-position of the aromatic ring were failed to give the desired product 38 and the 

starting material was recovered after the completion of the reaction under the same reaction condition. This is 

due to the presence of a strong electron-donating dimethylamino group and the subsequent formation of a 

quinoid structure that decreases the reactivity of the aldehydes group (Scheme 62b).114 

 

 
 

Scheme 62. Three-component synthesis of pyrano[2,3-c]pyrazole 38 using different PTC. 
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        In 2013, Wu et al. demonstrated the synthesis of several dihydropyrano[2,3-c]pyrazole derivatives 50 by a 

one-pot four-component reaction of aromatic aldehyde 10, malononitrile 2, different hydrazines 39, and ethyl 

acetoacetate 13 by using cetyltrimethylammonium chloride (CTACl) as a phase transfer catalyst (PTC) and 

water as a solvent at room temperature under an open atmosphere with vigorous stirring for 10 min and then 

the mixture was allowed to heat to 90 °C with vigorous stirring for 4 hours (Scheme 63).115 The product was 

formed as a solid which was purified by simple column chromatography over silica gel (100–200 mesh).  

 

 
 

Scheme 63. Rapid access to dihydropyrano[2,3-c]pyrazole 50 in presence of CTACl as PTC. 

 

        In 2014, Tamaddon and Alizadeh reported the synthesis of several dihydropyrano[2,3-c]pyrazole 

derivatives 37 through the one-pot four-component condensation reaction of aromatic aldehyde 10, 

malononitrile 2, hydrazine hydrate 9, and ethyl acetoacetate 13 under the influence of surfactant 

Cocamidopropyl betaine (CAPB) as a catalyst in aqueous medium at 50-60 °C (Scheme 64).116 The high reaction 

rate, short reaction time, and increase in the product yield can be achieved by using CAPB as the catalyst and 

it is mainly due to the formation of high performance viscoelastic worm-like micelles that increase the polarity 

and viscosity of water to provide a suitable medium for the reaction.  

 

 
 

Scheme 64. Construction of dihydropyrano[2,3-c]pyrazole 37 using surfactant CAPB as a catalyst. 

 

        Devi and co-workers developed a sodium dodecyl sulfate (SDS) catalyzed one-pot three-component 

condensation reaction of substituted isatin 48, malononitrile 2, and pyrazolone 74 for the preparation of 
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various spiro[indoline-3,4-pyrano[2,3-c]pyrazole] derivatives 75 by employing water as a solvent and the 

reaction has completed within 15-30 minutes at room temperature (Scheme 65).117 

 

 
 

Scheme 65. Sodium dodecyl sulfate catalyzed synthesis of spiro[indoline-3,4-pyrano[2,3-c]pyrazole] 75. 

 

 

2.8 Nature derived catalyst mediated synthesis 

In 2016, Vekariya and his group reported the use of fruit juice of Citrus Limon (lemon juice) as the 

biodegradable and renewable natural catalyst that could effectively catalyze the one-pot reaction of several 

derivatives of aldehyde 10, malononitrile 2, ethyl acetoacetate 13, and hydrazine hydrate 34 by using the 

aqueous ethanolic solution as a solvent at 90 °C, lead to the construction of dihydropyrano[2,3-c]pyrazole 

derivatives 37 in 90-98% yield (Scheme 66).118 The catalytic activity of lemon juice is mainly due to the 

presence of citric and ascorbic acids, thereby which it acts as an acid catalyst in this transformation.  

 

 
 

Scheme 66. Lemon juice as a natural catalyst for the preparation of dihydropyrano[2,3-c]pyrazole 37. 

 

        In 2017, Patel et al.119 derived nano-silica from agricultural waste wheat straw and it can be applied as a 

heterogeneous catalyst for the one-pot preparation of several dihydropyrano[2,3-c]pyrazole derivatives 37 

from the four-component reaction of aromatic aldehyde 10, malononitrile 2, hydrazine hydrate 9 and ethyl 

acetoacetate 13 by using water as a solvent at 80 °C (Scheme 67). The catalytic activity of the prepared 

catalyst was compared with other catalysts and it was found to be very superior to the reported catalyst for 

this transformation. By applying this catalytic system, 11 compounds were synthesized within a very short 

reaction time in good to excellent yield ranging from 87-94%.   
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Scheme 67. Nano-silica derived from wheat straw in the synthesis of dihydropyrano[2,3-c]pyrazole 37. 

 

       In the same year, the research group of Sachin has developed another nature-derived catalyst for the 

construction of dihydropyrano[2,3-c]pyrazole derivatives 7 from the in situ generated pyrazolone by 

employing water as a reaction medium. The synthesis was carried out via the one-pot reaction of several 

derivatives of aryl/heteroaryl aldehyde 5, malononitrile 2, hydrazine hydrate 34, and ethyl acetoacetate 13 in 

an aqueous medium at room temperature under the influence of bael fruit ash (BFA) as a natural catalyst 

(Scheme 68).120 The presence of metal oxides having active M2+, oxide, and hydroxides provides several Lewis 

basic sites (O2- and OH) along with Lewis acid sites (M2+) that activate the reactants towards the completion of 

the reaction.  

 

 
 

Scheme 68. Preparation of dihydropyrano[2,3-c]pyrazole 7 by using bael fruit ash as a natural catalyst. 

 

       Recently our group also synthesized a series of dihydropyrano[2,3-c]pyrazole derivatives 14 and 

spiro[indoline-3,4-pyrano[2,3-c]pyrazole] 77 from the two-component reaction of arylidene malononitrile 15 

/or 2-(2-oxoindolin-3-ylidene)malononitrile 76 and pyrazolone 16 by using water extract of banana peels 

(WEB) as nature-derived reaction medium at room temperature for 30 minutes. Although this is not included 

in the multicomponent reaction. However, several advantages such as mild reaction conditions, 

environmentally friendly nature, operational simplicity, low cost, an excellent yield of the product make this 

methodology very attractive for future application in organic synthesis (Scheme 69).121 In this reaction WEB 

plays an important role both as the catalyst as well as a solvent without using any other ligand, base, metal 

additives, acid, etc. 
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Scheme 69. WEB in the synthesis of dihydropyrano[2,3-c]pyrazole 14 and spiro-pyrano[2,3-c]pyrazoles 77. 

 

2.9. Other synthetic approaches 

A one-pot four-component condensation reaction of different carbonyl compound 79/substituted isatin 1, 

malononitrile 2, hydrazine hydrate 9, and ethyl acetoacetate 78 by introducing bio-based catalyst meglumine 

in aqueous ethanolic solution at room temperature yield the dihydropyrano[2,3-c]pyrazole derivatives 80 and 

spiro[indoline-3,4-pyrano[2,3-c]pyrazole] derivatives 81 (Scheme 70).122 All aromatic, heteroaromatic as well 

as aliphatic aldehydes, ketones were smoothly undergoing the reaction in the successful transformation to the 

corresponding product.  

 

 
 

Scheme 70. Synthesis of dihydro- and spiro-pyrano[2,3-c]pyrazoles in presence of meglumine.  

 

      In 2015, the research group of Tayade described a one-pot green methodology for the construction of 

several substituted dihydropyrano[2,3-c]pyrazole derivatives 14, spiro[indoline-3,4-pyrano[2,3-c]pyrazole] 

derivatives 83 & 84 in good to excellent yield via the four-component reaction of aldehyde 5/substituted isatin 

48 or 1,1-(butane-1,4-diyl)bis(indoline-2,3-dione) 82, malononitrile 2, hydrazine hydrate 9 and ethyl 
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acetoacetate 13 under the influence of supramolecular β-cyclodextrin (β-CD) as an efficient, biodegradable, 

reusable catalyst in aqueous ethanol (9:1) at 80 °C for 15-30 minutes (Scheme 71).123 Various substitution at 

the C-5 position in isatin as well as substitution in aldehyde gave the corresponding dihydropyrano[2,3-

c]pyrazoles 14 & spiro[indoline-3,4-pyrano[2,3-c]pyrazole] 84 in 85-90%, 84-92% yield respectively.  

 

 
 

Scheme 71. Synthesis of various substituted pyrano[2,3-c]pyrazole 14, 83, 84 by using β-cyclodextrin (β-CD). 

 

         In 2016, Dalal et al. demonstrated Bovine serum albumin (BSA) as a biocatalyst for the synthesis of 

several ketones derived dihydropyrano[2,3-c]pyrazole 86, dihydropyrano[2,3-c]pyrazole derivatives 50, and 

spiro[indoline-3,4-pyrano[2,3-c]pyrazole] derivatives 75 in good to excellent yield from the three-component 

condensation reaction of ketone 85, aldehydes 10 or isatin 48, malononitrile 2 and pyrazolone 74 using 

aqueous ethanol as a solvent (Scheme 72).124  The catalytic activity of BSA was found to be very efficient for 

the successful conversion of aldehydes, ketones, and isatins possessing various electron-withdrawing as well 

as the electron-donating group to the desired product. The utilization of BSA as an efficient catalyst provides 

an alternate route to metal catalysts as well as finding further applications in the field of synthetic organic 

chemistry and biocatalysis.  
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Scheme 72. BSA catalyzed synthesis of different pyrano[2,3-c]pyrazole 86, 50 & 75. 

 

         The use of α-casein as an efficient catalyst for the construction of spiro[indoline-3,4-pyrano[2,3-

c]pyrazole] derivatives 72 and dihydropyrano[2,3-c]pyrazole derivatives 37 through the four-component 

reaction of aromatic aldehyde 10 or substituted isatin 1, malononitrile 2, hydrazine hydrate 9, and ethyl 

acetoacetate 13 in presence of aqueous ethanolic solution at 60 °C  has been developed by Milani et al. in 

2019 (Scheme 73).125 The catalytic activity of α-casein was found to be very efficient that lead to the 

construction of a total of 12 compounds in very high yield and the product could be achieved by a simple 

work-up procedure without using any other purification techniques.  

 

 
 

Scheme 73. Access to spiro-pyrano[2,3-c]pyrazole] 72 & dihydropyrano[2,3-c]pyrazole 37 using α-casein. 
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Conclusions 
 

Because of the marvelous application in synthetic organic chemistry, material science, medicinal and 

pharmaceutical chemistry, food industry, textile industry, cosmetics products, chemical industry; the 

exploitation of pyrazolone in organic synthesis has rapidly increased continuously. Tremendous efforts have 

been devoted over the last decades for the construction of dihydropyrano[2,3-c]pyrazole and spiro[indoline-

3,4-pyrano[2,3-c]pyrazole] derivatives based on pyrazolone via several sequential strategies including base-

catalyzed, acid-catalyzed, nano catalyzed, and organocatalyzed multicomponent reactions. Development of 

catalytic synthetic processes by environmentally benign reaction media instead of hazardous materials, 

volatile organic solvents, and reagents in order to control the production of dangerous byproducts that can 

affect human health and the environment has been the foremost goal for synthetic chemist in industry and 

academia. In this regard, the use of water as a replacement of organic solvents in the development of the 

organic synthetic procedure has received substantial attention due to their abundantly available, non-

hazardous, non-flammable, unique redox stability, and cheap nature. Furthermore, the utilization of water in 

synthetic processes sometimes leads to different modes of reactivity or selectivity which are often difficult to 

achieve with organic solvents. Given the importance of both topics in organic synthesis, we have summarizes 

the up to date advances for the synthesis of dihydropyrano[2,3-c]pyrazoles and spiro-pyrano[2,3-c]pyrazoles 

based on pyrazolone via multicomponent reactions in the aqueous medium. Although remarkable results are 

obtained, various simple, effective, and concise methodologies are still highly desired and it is significant to 

expand the scope of the reactions and mildness of the conditions for the synthesis of pyrano[2,3-c]pyrazole 

derivatives. We hope the reviewed methodology has been beneficial for researchers working in this field and 

is projected to encompass vital applications to the amalgamation of complex natural products and the design 

of new pharmaceutical compounds that will be of industrial interest in application to many branches of 

chemistry.   
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