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Abstract 

Atropisomerism is a type of chirality that is ubiquitous but often overlooked in modern drug discovery. In this 

Account we discuss studies on leveraging atropisomerism as a design principle in medicinal chemistry, and 

how this work led to several seemingly disparate projects that began due to synthetic challenges associated 

with accessing pharmaceutically relevant atropisomers. 
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1. Introduction 

 

 
 

Figure 1. a) Atropisomer racemization occurs via bond rotation (red arrow); stereochemical stability of 

atropisomers are denoted as barrier to rotation (ΔGrac); R
1 ≠ R2 ≠ R3 ≠ R4. b) Examples of potentially stable, non-

biaryl atropisomers. c) Example of stable, biaryl atropisomer BINOL. Both atropisomers are shown. 

 

Atropisomerism is a stereochemical phenomenon that occurs when there is a hindered rotation about 

an axis, most commonly seen in the context of a σ-bond between two sp2-sp2 atoms (Figure 1a). While 

atropisomerism is typically exemplified by the biaryl scaffold, axial chirality can be observed in diverse 

structural motifs including benzamides, diaryl ethers, diaryl amines, anilides, and N-C aryl atropisomeric 
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scaffolds (Figure 1b).1–7 Atropisomerism is different from other forms of chirality as σ-bond rotation leads to a 

spontaneous mechanism of racemization. As such, atropisomers can span the gamut of stereochemical 

stability from rapidly interconverting atropisomers that racemize on less than the second time scale to highly 

stereochemically stable and isolable enantiomers, as is the case with the venerable BINOL scaffold8–10 (Figure 

1c) and countless natural products.11  

While traditionally a scaffold is considered to be atropisomeric only if its half-life to racemization (t1/2) 

is >1000 seconds at room temperature, LaPlante and colleagues12 have put forward a more sophisticated 

system where they group atropisomers into three classes. Class-3 atropisomers possess barriers to rotation 

(ΔGrac) above 30 kcal/mol and are considered stereochemically stable in the context of drug discovery, with 

t1/2 to racemization at room temperature on the year or greater time scale. Class-2 atropisomers possess 

stereochemical stabilities that are considered ‘meta-stable’ in that the atropisomers can be isolated in 

enantiopure form, however, racemization will occur on the day to month timescale at room temperature. 

Finally, Class-1 atropisomers encompass all atropisomeric scaffolds wherein the enantiomers cannot be 

isolated due to rapid racemization at room temperature (Figure 2).13–15 

 

 
 

Figure 2. Examples of atropisomerism in drug discovery overlaid with the ranges of each class of atropisomer 

stability.  

 

We were inspired by Class-1 atropisomers, as they proved to be prevalent throughout modern drug 

discovery. Indeed, our group has recently published an analysis1 wherein we found that almost a third of small 

molecule drugs that were approved by the FDA since 2011 possessed at least one Class-1 axis of 

atropisomerism. Atropisomerism was even more represented in some classes of drugs. For example, close to 

85% of kinase inhibitors possess at least one instance of Class-1 atropisomerism. While many of these Class-1 

atropisomers are thought to be ‘flat’ planar compounds, analysis of crystallographic data demonstrates class-1 

atropisomers bind a given protein target in an atropisomer selective fashion. 

Analysis of such crystallographic data in the PDB led us to hypothesize that  preorganizing a Class-1 

atropisomeric axis to the preferred atropisomeric configuration of a given target can have significant effects 

on the target selectivity of the scaffold by precluding other conformations that might bind to other targets and 

thus contribute off-target activities. This hypothesis has been a central tenet of our work, and pursuit of the 

syntheses of compounds to test this hypothesis has necessitated us to undertake seemingly unrelated 
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research directions. For example, early on we had to develop new methodologies that allowed for the mild 

and regioselective functionalization of pharmaceutically relevant scaffolds that could be used to rigidify Class-

1 axes to Class-3 axes (Section 2). With this chemistry in hand, we were able to study the effect of 

atropisomerism on the potency and selectivity of promiscuous kinase inhibitors, learning that both 

atropisomeric conformation and accessible conformations about the axis played a key role (Section 3). Finally, 

our work on the effects of atropisomerism on the biological activity of small molecules led us to realize that 

there was a need for more efficient access to enantiopure samples leading us to work on several projects 

concerning diverse chemical strategies towards the atroposelective synthesis of pharmaceutically relevant 

atropisomeric scaffolds including biaryls, heterobiaryls, diaryl ethers, diaryl amines, and related scaffolds 

(Section 4). As each project has been instrumental towards carrying out other projects, we have fashioned this 

account to cover our work in detail, and hopefully demonstrate their interconnectedness.   

 

2. Developing Lewis Base Catalysis as a Method for the Late-Stage Functionalization of 
Pharmaceutically Relevant Scaffolds 
 

2.1. Developing a Lewis base catalyzed SEAr strategy 

Halogenation of arenes and heterocycles are commonly achieved using electrophilic aromatic substitution 

(SEAr), however there are a lack of mild methodologies to perform SEAr on more complex substrates, and 

more generally SEAr is largely an unsolved problem for the late-stage functionalization of complex molecules.16 

We were interested in the direct regioselective chlorination of pyrrolopyrimidines (PPYs), a common kinase 

inhibitor scaffold, as it represented an efficient synthetic strategy to obtain Class-3 atropisomeric analogues. 

Evaluation of several common conditions resulted in no conversions or complex mixtures of products, leading 

us to turn our attention to developing a more reactive yet mild strategy towards the electrophilic halogenation 

of aromatics (Scheme 1a). 

We were initially inspired by the work of Denmark on the Lewis base catalyst activation of N-

halosuccinimides for the electrophilic functionalization of alkenes.17 In this work, they observed that Lewis 

bases could activate NXS and influence the rate and constitutional site selectivity of halolactonizations. The 

use of catalytic amounts of common Lewis bases such as thioureas, phosphine sulfides, and 

thiophosphoramides resulted in increased reaction rates and good yields (up to 90%) of cyclized product. 

Furthermore, the structure of the Lewis base seemed to have an effect on the regioselectivity of the reaction. 

The observed influence on the constitutional site preference of the product suggested that the Lewis base is 

involved in the transitional structure.  

Based on these results, we hypothesized that electrophiles could be activated by Lewis bases to effect 

SEAr. Indeed, we found that phosphine sulfides, such as triphenylphosphine sulfide 1 or tri-

butylphosphinesulfide (2), are able to catalyze the halogenation of diverse aromatics (Scheme 1b) through 

activation of readily available N-halosuccinimide reagents NXS (X = Cl, Br, I).18 It is worth noting that more 

electron rich phosphine sulfides such as 2 were more active catalysts, however catalyst 1 was chosen as the 

featured catalyst as it is commercially available, inexpensive, and still furnished significant reaction rate 

accelerations compared to the absence of catalyst. This chemistry proved amenable to diverse heterocycles 

including azaindoles (i.e. 3), pyrrolopyrimidines (i.e. PPYs, 4), and various arenes (i.e. 5). Furthermore, 1 also 

resulted in marked improvements for electrophilic aromatic bromination (i.e. 6) and iodination (i.e. 7). For the 

majority of substrates, no reaction was observed in the absence of catalyst and the catalyzed reaction rate 

compared favorably to the state-of-the-art conditions of Baran’s chloro-bis(methoxycarbonyl)guanidine 

(CBMG) reagent.19 
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Scheme 1. (a) The Lewis base catalyzed electrophilic halogenation of pharmaceutically relevant arenes and 

heterocycles. (b) Illustrative examples of substrate scope.  

 

2.2. The regioselective chlorination of phenols 

We performed several DFT calculations on the phosphine sulfide-NXS system, and in line with work by 

Denmark17 these studies suggested the chemistry proceeded via a direct Lewis base-halenium adduct. 

Fascinated by this observation, we wanted to explore whether the structure of the Lewis basic catalyst could 

control the regiochemical outcome of halogenation. Controlling the regioselective outcome of SEAr on 

aromatics and heteroaromatics is a largely unsolved problem as many aromatics have multiple reactive sites.20 

Current methods that halogenate one constitutional isomer rely on substrate modifications such as blocking 

the position of unwanted halogenation, or require the use of harsh conditions.21,22 These methodologies 

cannot be applied for the use in late-stage functionalization (LSF) of pharmaceutically relevant scaffolds as 

they can irreversibly alter the substrate structure or are not functional group tolerant.23 There is an unmet 

need to develop a method that relies on catalyst control to overcome a substrate’s innate regioselectivity. 

From an energetic perspective, obtaining catalyst controlled regioselectivity can be more challenging 

than obtaining enantioselectivity (Figure 3). In enantioselective catalysis, the enantiodivergent pathways have 

transition states that are equal in energy, meaning a catalyst needs to only prefer one pathway by ~1.3 

kcal/mol to yield a 9:1 enantiomeric ratio. On the other hand, in a regioselective reaction the regiodivergent 

reaction pathways possess transition states that are at different energy levels. Therefore, in many cases a 

catalyst must first initially overcome the innate selectivity of the reaction plus an additional ~1.3 kcal/mol to 

achieve a 9:1 ratio of constitutional isomers (figure 3).24 Currently there are only few examples in the 

literature of catalyst controlled regioselective additions in the context of SEAr,25,26 including seminal work by 

Miller selectively brominating complex natural products using a peptide-based catalyst.27 A regiodivergent 

approach was pioneered by Lewis using enzymes evolved from RebH to chlorinate indoles and other arenes 

with stunning site-selectivities.28,29 
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Figure 3. Challenge of regioselectivity: innate vs. catalyst-controlled SEAr of arenes 

 

 
 

Scheme 2. (a) General scheme for regiodivergent chlorination. (b) Selected substrates affected by ortho- and 

para- selective catalysts. (c) Proposed model of regioinduction by catalyst 8. 
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para SEAr (Scheme 2a). After evaluating several Lewis base catalysts, we found that Nagasawa’s bisthiourea 

catalyst30 8 was able to overcome the innate para-selectivity of SEAr on phenols, yielding up to 20:1 ortho to 

para ratios. For comparison, catalyst 1 yielded a 1:3 ortho:para ratio. These ortho-selectivities held across a 

range of substituted phenols (Scheme 2b) to give ortho chlorinated phenols such as 10, 11, and 12. We 

hypothesize that the regio-control of Nagasawa’s catalyst 8 proceeds via a mechanism in which one thiourea 

moiety is interacting with the hydroxyl group of phenol, and the other one activates NCS through a Lewis basic 

mechanism (Scheme 2c).31 We also found that bis(diphenylphosphino)-1,1’-binapthyl(BINAP)-derived 

phosphine sulfide 9  routinely yielded improved para-selectivities compared to catalyst 1, with 9 often 

resulting in ortho:para ratios of more than 1:15 32 The improved para selectivity of 9 was recently leveraged by 

Takahashi in the total synthesis of the kehokorins.33  

 

2.3. Lewis base catalyzed radical bromination 

 

 
 

Scheme 3. (a) Benzylic bromination catalyzed by phosphine selenides. (b) Synthesis of phthalate lactones via 

benzylic bromination followed by intermolecular SN2. (c) Imine formation via selenide catalyzed benzylic 

bromination. (d) Proposed mechanistic model for formation of bromine radical. 

When evaluating catalyst 1 and other Lewis bases for bromination of alkyl substituted arenes, we 

observed trace amounts of benzylic bromination. This was in line with observations from Mukherjee34 and 

Tunge35 wherein they found that thioureas or selenides can affect radical bromination reactions. Intrigued by 

their work we hypothesized that the nature of the Lewis base could be tuned to prefer radical halogenation 

reactions over SEAr. Evaluation of different Lewis bases led us to find that simply switching the sulfur in 1 to 

selenium in 16 led to efficient benzylic bromination using NBS.36 For example, the addition of 10 mol% of 

triphenylphosphine selenide 16 afforded 89% yield of benzyl bromide from toluene. This methodology was 

applied to several substrates, typically resulting in clean benzylic bromination (Scheme 3a). The utility of this 

methodology was demonstrated on substrates that can be reacted further upon bromination. For example, we 

were able to synthesize phthalate lactones37 from substituted benzoic acid derivatives (Scheme 3b) and imines 

from benzylsulfonylamines  (Scheme 3c). We then studied this reaction computationally, finding that this 

chemistry likely proceeded via a Lewis base halenium adduct that would then homolytically cleave to give 
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bromine radical due to the lower oxidation potential of selenium compared to sulfur (Scheme 3d). The Br 

radical would then undergo benzylic bromination via the canonical Wohl-Ziegler mechanism.38 

 

2.4. Lewis base/Brønsted acid dual catalyzed sulfenylation of aromatics 

Aryl sulfides are common functionalities and synthetic intermediates in drug discovery39–41 and material 

science.42 For example, the kinase inhibitor Axitinib is an FDA-approved diaryl sulfide.43–45 Typically, C-S bonds 

are created through cross-couplings via metal catalysis,46–48 but this generally requires the use of pre-

functionalized starting materials and transition metal catalysts. Sulfenylation via SEAr is an emerging strategy 

for aromatic C-S bond formation, with the majority of examples utilizing electrophilic N-thiosuccinimides.49–51 

While seminal, these examples suffer from limited substrate scope or a reliance on super-stoichiometric 

quantities of strong acids. 

 

 
 

Scheme 4. Lewis base-Brønsted acid catalyzed sulfenylation of nitrogen containing heterocycles 
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allowing for the sulfenylation of diverse pyrroles and indoles under mild conditions (Scheme 4). Of note, this 

chemistry was applicable to the incorporation of diverse sulfide moieties, including functional groups such as 

azides as in 18 and 19, amino acids as in 20, and medicinally useful groups such as the trifluoromethylthio 
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group (SCF3). While our goal was to avoid the use of strong acids, it is important to mention that we saw full 

conversion on the minute time scale upon addition of TFA to catalyst 17. 

We next set out to improve the substrate scope of Lewis base catalyzed sulfenylation to include less 

electron rich arenes.53 Inspired by the work of Zhao,54,55 we evaluated a series of chalcogenide ethers, finding 

that catalytic amounts of electron rich selenoether  catalysts 21 are the effective arene sulfenylation catalysts 

in the presence of 10 mol% trifluoromethanesulfonic acid (TfOH). During optimization we observed that 

electron rich sulfide products underwent a competing autocatalytic sulfenylation, and thus did not need 

added Lewis base catalyst (Scheme 5). On the other hand, electron poor sulfide products (i.e. products 

wherein the trifuoromethylthio-group was added) did not undergo autocatalysis, thus added selenoether 

catalyst was necessary. Overall, this system allowed for the incorporation of electron poor sulfides into diverse 

arenes (Scheme 5). For example, we were able to directly incorporate an azide into the FDA-approved drug 

Naproxen to give 22, as well as a trifluoromethylthio group into pharmaceuticals Tolmetin to give 23 and 

Paroxetine to give 24. 

 

 
 

Scheme 5. Lewis base-Brønsted acid catalyzed sulfenylation of pharmaceutically relevant arenes. 
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thiobenzamide sulfur which then undergoes radical cyclization. A second oxidation by a persulfate radical 

anion generates a Wheland arenium ion which then undergoes elimination to give the benzothiazole. 

We also observed indole C-H sulfenylation using 4-methylbenzenethiol under similar conditions 

(Scheme 6b). For example, we were able to sulfenylate melatonin to give 28 in 68% yield. Mechanistic studies 

here suggested a different mechanism than the benzothiazole chemistry, wherein the indole is oxidized to a 

cation that is then nucleophilically attacked by thiophenols to give C-2 or C-3 sulfenylated indole.58 

 

 
 

Scheme 6. (a) The photocatalytic cyclization of thiobenzamides to benzothiazoles and selected examples. (b) 
The photocatalytic sulfenylation of indoles and selected substrates. 
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The mild Lewis base catalyzed SEAr discussed in Section 2 enabled us to begin studies on the biological 

effect of rigidifying Class-1 bioactives to Class-3 atropisomerically stable bioactives. Our initial work focused on 

pyrrolopyrimidine-based kinase inhibitors (PPYs), a common and promiscuous kinase inhibitor (KI) scaffold 

that often possesses at least one Class-1 atropisomeric axis as exemplified by compound 31 (Figure 4).59 We 

developed a scalable racemic synthetic route towards atropisomerically rigidified PPYs wherein the axis was 

rigidified late stage using a Lewis base catalyzed halogenation. We were able to obtain enantiopure samples of 

each atropisomer via separation of the enantiomers on a chiral stationary phase. We next determined the 

stereochemical stability for each series of atropisomers using standard HPLC methods, finding stereochemical 

stabilities between 28-30 kcal/mol, meaning these compounds existed at the interface between Class-2 and 

Class-3 stabilities. The lower stereochemical stabilities of these compounds is due to the geometric 

implications of having a 5-membered ring as part of the atropisomeric system.6  

We then subjected 31 and both atropisomers of stereochemically stable 32 to kinase inhibitor profiling 

across a panel of tyrosine kinases, finding that the Class-3 atropisomers were more selective than the Class-1 

‘parent’ molecule 31. We then obtained IC50 data for 31 and 32 across a small panel of kinases consisting of 

Src, EGFR, Yes, Ret, and Abl, and found that the atropisomers of 32 possessed notably different activity 

profiles (Figure 4). While PPY 31 displayed little selectivity towards the kinases tested, PPY (Ra)-32 displayed a 

preference for RET kinase, and its enantiomer (Sa)-32 displayed a preference for Src and Abl kinases. While the 

atropisomeric compounds were roughly an order of magnitude less potent than the parent molecule, the 

improved selectivity represented a proof of concept that the promiscuous activities of a Class-1 atropisomer 

could be decoupled to specific atropisomer conformations. 

 

 
 

Figure 5. Optimization of a potent and selective RET kinase inhibiting scaffold. 
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therapeutics, RET selectivity was proven to be a challenge. The lack of selectivity in RET inhibitors is associated 

with adverse events in patients that are caused by inhibition of kinases other than RET, necessitating the 

development of more selective RET Inhibitors. Beginning with in silico docking studies on various inhibitors, we 

were able to come up with several hypotheses that led to notable improvements in selectivity and potency, 

eventually leading to (Ra)-33 (Figure 5).67 Evaluation of the selectivity of (Ra)-33 revealed that it displays 2-3 

orders of magnitude of selectivity for RET over myriad kinases including EGFR and VEGFR2, kinases whose off-

target inhibition leads to adverse effects in cancer patients. (Ra)-33 also displayed good antiproliferative 

effects with low single-digit nanomolar activities in RET-driven models of thyroid cancer, lung cancers, and 

breast cancers with no off-target effects in cell lines that were not RET-dependent. 

 

 

 
 

Figure 6. Optimization of a potent and selective RET kinase inhibiting scaffold (blue bar graphs) with secondary 

EGFR activities (yellow bar graphs). PPY (Ra)-33 (magenta) possesses Class-3 atropisomerism while 34 (green), 

35 (orange) and 36 (teal) all possess Class-1 atropisomerism. 

 

We next sought out to understand the marked increases in selectivity. Analysis of the predicted 

conformational energy profile about the atropisomeric axis of a series of PPYs demonstrated that Class-3 

atropisomers had significantly restricted windows of accessible dihedral conformations than that of Class-1 

atropisomers (Figure 6). When these conformational energy profiles are overlaid with the preferred 

conformations of over 110 PPYs and similar scaffold bound to kinases in the PDB, it becomes clear that the 
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majority observed improvements in RET selectivity and potency are likely due to this narrowing of the low-

energy conformational window accessible to (Ra)-33 (Figure 6, narrowing of the magenta curve).  For example, 

the Class-1 atropisomer promiscuous kinase inhibitor PP1 35 has roughly 85% of the observed binding 

conformations from the PDB fall within 1.3 kcal/mol of its predicted conformational ground states. In contrast, 

less than 60% of the observed PDB conformations fall within 1.3 kcal/mol of the predicted ground state 

conformations of (Ra)-33. Furthermore, the preferred conformations of these scaffolds bound to RET 

corresponds to the more orthogonal predicted ground state conformation of (Ra)-33. While these effects may 

not be a direct consequence of introducing atropisomerism, rigidifying the axis to synthesize stereochemically 

stable compounds is likely needed to design inhibitors that favor conformations approaching orthogonality. 

Furthermore, we acknowledge that adding ‘blocking groups’ may lead to new interactions which may also lead 

to the observed changes in potency and selectivity. This work is certainly an application of the magic methyl 

effect and, in seminal work from Jorgenson,68 it is demonstrated that the majority of ‘Magic-Methyl’ effects 

are caused by conformational changes in line with what we propose.  

To further test our hypothesis, we evaluated (Ra)-33 against kinases that were predicted to prefer 

conformations similar to RET. Notably these kinases included oncogenic mutations of EGFR, but not Wild-type 

EGFR. Mutant EGFRs have been a long-standing target for drug discovery, with three generations of FDA 

approved drugs in the clinic. Despite this, there is no truly mutant selective inhibitor currently available, which 

causes an issue in patients as WT EGFR is an essential kinase in several canonical signaling pathways and its 

inhibition leads to several grade 3 and grade 4 adverse effects in patients. Furthermore, the current EGFR 

inhibitors in the clinic lack efficacy towards an emerging triple mutant (L858R/T790M/C797S) that occurs in 

roughly a third of patients on third generation EGFR inhibitors. As such, there is a great need for a 4th 

generation EGFR inhibitor that possesses high mutant over wild type selectivity while maintaining activity 

towards the triple mutant. Due to these issues, and the fact that EGFR mutants bind their targets in 

conformations similar to RET, we evaluated (Ra)-33 against the leading oncogenic EGFR mutants, finding low 

double digit nanomolar potencies across the board, with 2-3 orders of magnitude preference for the mutants 

over wild type. Notably these potencies and selectivities held in cellular models of EGFR driven cancers. 

 

 

4. Developing Atroposelective Synthetic Methods Towards Pharmaceutically Relevant 
Scaffolds 
 

Our work on introducing atropisomerism as a design element to modulate the potency and selectivity of small 

molecule bioactives proceeded through the racemic synthesis of the atropisomer followed by chiral 

resolution, typically via chiral HPLC. Because of this, access to atropisomerically pure scaffolds has represented 

one of the major bottlenecks that we have faced. Catalytic atroposelective syntheses of pharmaceutically 

relevant scaffolds would represent a more efficient and scalable approach. However, the majority of examples 

of catalytic atroposelective synthesis in the literature have focused on biphenyls or binaphthyl-based 

atropisomers. While there are some reports of the atroposelective syntheses of heterobiaryl scaffolds,69–72 the 

enantioselective syntheses of the vast majority of pharmaceutically relevant potentially atropisomeric 

heterobiaryl systems have not been studied in depth.  As such our group has begun to focus on the 

development of new strategies towards the atroposelective synthesis of pharmaceutically relevant scaffolds. 
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4.1. Atroposelective nucleophilic aromatic substitution (SNAr) strategies towards 3-aryl PPYs 

Nucleophilic aromatic substitution (SNAr) is among the most used reactions in modern drug discovery73 as 

diverse relevant functionalities can be introduced into pharmaceutically relevant heterocycles via SNAr. In 

2015, the Smith group disclosed an atroposelective desymmetrization of biaryl pyrimidines via chiral cation-

directed SNAr of thiophenols (Scheme 7).74 This work represented the first example of atroposelective SNAr 

and furnished atropisomeric pyrimidines such as 38 and 39 in excellent yields and selectivities. 

 

 
 

Scheme 7. Desymmetrization of biaryl pyrimidines via atroposelective cation-catalyzed SNAr. 

 

Inspired by Smith’s work, we developed an atroposelective SNAr strategy towards 3-aryl PPY kinase 

inhibitors via kinetic resolution (KR) (Scheme 8a).75 Similar to the findings from the Smith group, we found that 

quaternary ammonium chloride salts derived from quinine, such as 37, to be selective catalysts, however this 

chemistry performed best in aprotic solvents in the absence of water. The optimal catalyst and conditions 

were amenable to a number of structurally diverse PPYs and common perturbations that may be encountered 

in a medicinal chemistry campaign. For example, the N-substitution off of the pyrrolopyrimidines (R1) could be 

diverse alkyl groups with minimal perturbation in selectivity given by s-factor (40 and 41), the 3-aryl group 

could also be modified to myriad aryl groups as in 42. The C-2 position (R2) proved most sensitive with strongly 

electron withdrawing groups (i.e. nitro) leading to poor selectivity due to a significant background reaction, 

and electron donating substituents (i.e. alkyl groups) leading to minimal conversions to product. Nonetheless, 

this chemistry was amenable to substitutions such as Cl, Br (43), and the difluoromethyl group (44).  

Importantly, we found that both the recovered starting material, and the sulfide products could be 

transformed without racemization into the pharmaceutically relevant aminopyrimidines with no observed 

racemization via a 2 or 3-step process (Scheme 8b). While the sensitivity of this reaction to substitution at the 

C-2 is a limitation, we found that substrates with C-2 halogen substitution could be easily transformed to 

alkylated (45, 47) and arylated (46) analogs using known cross-coupling conditions (Scheme 8c).76 Finally, It 

should be noted that simple trituration allowed us to augment the isolated e.r.s to greater than 99:1. 
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Scheme 8. (a) Atroposelective SNAr of 3-aryl PPYs.  (b) Some examples from the substrate evaluation. c) Route 

towards amination of products without racemization.  Recovered starting materials are also able to undergo 

this amination strategy. (d) Modern coupling conditions yield desired electron-rich PPYs, such as C-2 methyl or 

C-2 phenyl PPYs without any observable racemization. 

 
4.2. Atroposelective vicarious nucleophilic substitution (VNS)-like strategies towards atropisomeric 
naphthoquinones  

One drawback of the aforementioned atroposelective SNAr is that the isolated yield is limited to 50% in an 

ideal situation by the kinetic resolution (KR) character of the reaction. We hypothesized that vicarious 

nucleophilic substitution (VNS) would allow for a ‘dynamic kinetic resolution’ (DKR) wherein a Class-1 

atropisomer is rigidified to a Class-3 atropisomer. Along these lines, it is known that various nucleophiles, 

including thiophenols, can add into unsubstituted quinones and naphthoquinones in a process similar to 

VNS.77,78 Inspired by this reactivity, we sought to determine if thiophenols could be added atroposelectively 

into aryl-substituted naphthoquinones (Scheme 9a).79 
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We quickly found that quinine derived catalysts possessing a sterically hindered benzamide off of the 

C-9 position (such as 48) could affect the addition of diverse thiophenols into aryl substituted 

naphthoquinones in good yields and selectivities, however the recovered products possessed barriers to 

rotation around 26 kcal/mol, leading to spontaneous racemization on the month time scale at room 

temperature (Scheme 9b). On the other hand, reduction of the products to the alkylated hydroquinone such 

as 57 or 58 led to products that were significantly more stereochemically stable (~36 kcal/mol). The dramatic 

increase in stereochemical stability of hydroquinones compared to quinones is in line with previous 

observation from Regan in the context of the total synthesis of Bismurrayquinone A.80  Gratifyingly we found 

simply running the thiophenol addition at 0 oC and performing an alkylative reductive quench allowed us to 

access several diverse (49–53) stereochemically stable products in excellent overall yields and 

enantioselectivities above 95:5 e.r. (Scheme 9c). 

 

 
 

Scheme 9. (a) Atroposelective VNS-like reaction towards naphthoquinone biaryls. (b) Selected examples from 

our substrates evaluation. (c) Comparing the stereochemical stabilities of resulting sulfides their various 

oxidation states.  

 

 

O

O

R2

S+

2) Na2S2O4 (aq.), THF, 

    MeOH, 0 oC

3) KOH (aq.), Me2SO4

MeO

MeO

R2

SH

Summary of results:
• 27 examples, 1 example on gram-scale
• <98.5:1.5 e.r., <99% yield
• >99.5:0.5 after recrystallization

R3

R3
N

OMe

NH

N

H

O

Me

Me

Me

H

R1

R1

catalyst 48
(a)

1) 48 (5 mol%), 

    0.05 M PhMe

    4 oC, 20 h

(b)

S

MeO

MeO

CF3

49
96:4 e.r., 82%

Me

S

MeO

MeO

Me

50
96:4 e.r., 82%

Me

S

MeO

MeO

CF3

53
93:7 e.r., 86%
[gram-scale]

(>99.5:0.5 e.r., 82%)*

Cl

*after
trituration

S

MeO

MeO

52
92:8 e.r., 95%

Me

S

MeO

MeO

Me

51
88:12 e.r., 83%

Me

Me

Cl

Me

(c)

X

O

O

CF3

54 (X = SPh)

55 (X = SO2Ph)

DGrac ~ 26 kcal/mol

OH

OH

CF3

56

DGrac ~ 36 kcal/mol

OMe

OMe

CF3

57 (X = SPh)

58 (X = SO2Ph)

DGrac ~ 38 kcal/mol

SO2Ph X



Arkivoc 2021, i, 20-47   Cardenas, M. M. et al. 

 

 Page 36  ©
AUTHOR(S) 

 
 

Scheme 10. Diaryl ethers are a common scaffold in drug discovery. (a) Examples of atropisomeric diaryl ethers 

in medicine. (b) Clayden and Turner’s desymmetrization of diaryl ethers via biocatalytic reduction. 

 

We also studied the quinone VNS strategy in the context of O-aryl quinoids, a scaffold that is closely 

related to diaryl ethers. Diaryl ethers and related scaffolds are a somewhat common pharmacophore that 

possess the potential for atropisomerism. For example, the FDA-approved kinase inhibitor Regorafenib 

possesses a Class-1 diaryl ether atropisomeric axis,65,81 Cabozantinib possesses a ‘pro-chiral’ diaryl ether 

axis,81,82 and the venerable antibiotic Vancomycin possesses two Class-3 diaryl ether atropisomeric axes 

(Scheme 10a).83,84 Despite this the asymmetric synthesis of diaryl ethers and related compounds have been 

relatively understudied, likely due to the fact that diaryl ethers represent a ‘2-axes’ system, which Clayden has 

demonstrated result in the possibility for a concerted gearing mechanism of racemization that occurs at a 

lower energy level, resulting in diaryl ethers posing lower stereochemical stabilities than biaryls.  Nonetheless, 

Clayden has found that diaryl ethers with four ortho-substituents, and at least one tertiary alkyl group (i.e. 

tBu) can exist as Class-3 atropisomers. He subsequently worked with the Turner group to develop a 

biocatalytic desymmetrization that allowed access to enantiopure diaryl ethers as exemplified by the 

transformation of 59 to 60 (Scheme 10b).85 As of this writing, this is the only example of the enantioselective 

synthesis of diaryl ethers.  
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Scheme 11. Atroposelective VNS towards O-aryl quinoids using nitromethane. 

 

Inspired by these precedents, we designed a class of O-aryl quinoids (Scheme 11) and sought to 

determine if we could develop a catalytic enantioselective VNS-like strategy to access stereochemically stable 

products. While the addition of thiophenols did not prove fruitful, we found that we could affect 

atroposelective methylation  on this scaffold using nitromethane as the methyl source (Scheme 11),86 in line 

with chemistry from Mukherjee.87,88 In this work, sterically hindered ureas containing quinine derivatives such 

as 61  were found to effect the alkylation in good yields and moderate to good enantioselectivity (up to 85:15 

e.r.). The moderate enantioselectivity was perhaps due to the products existing as Class-2 atropisomers with 

barriers to racemization between 25-28 kcal/mol due to the aforementioned gearing mechanism to 

racemization. Nonetheless, the enantiopurity of the alkylated products could be amplified to greater than 95:5 

e.r. via trituration. It should be noted that several of the evaluated substrates resulted in a competing 

‘nitroethylated’ byproduct (i.e, 64) with similar enantioselectivities up to 78:22 e.r. and up to 68% yield. 
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than expected barriers to racemization.89 Clayden has recently reported a detailed study on the 

conformational stability of  2,2’-di-ortho-substituted diarylamines, wherein they observed that the size of 

ortho substituents on the different aryl rings can have a marked effect on the conformational profile, with 

larger substituents leading to a more perpendicular preferred conformation, and the possibility for 

stereochemical stability as demonstrated with compound 65 and 66 (Scheme 12a).90 Work by Kawabata has 

demonstrated that the stereochemical stability of diaryl amines could be increased by an intramolecular N-H-

N hydrogen bond (Scheme 12b).91 Essentially, the hydrogen bond locked one of the atropisomeric axes into a 

planar conformation, preventing “gearing” mechanism of racemization. It should be noted that Kawabata 

observed that diaryl amine stereochemical stability was dependent on the strength of the intramolecular 

hydrogen bond, with weaker interactions leading to stereochemical instability. More recently, Clayden 

resolved the atropisomers for diarylamines without an internal H-bond, finding them typically to exist as Class-

1 or Class-2 atropisomers.70 

 

 
 

Scheme 12. Previous work on atropisomerically stable diaryl amines 

 

To the date of writing this account there is not a single example reported in the literature on the 

enantioselective synthesis of axially chiral diaryl amines. Inspired by Kawabata’s work on hydrogen bonding 

dependent stability of biaryl anilines, we designed N-aryl quinoids such as 68 (Scheme 13) that possess a 5-

membered intramolecular N-H-O hydrogen bond, however it exists as a Class-1 atropisomer. We then 

observed that halogenation of the ‘enamine-like’ naphthoquinone C-H of 68 led to 69, which existed as a 

stereochemically stable Class-3 atropisomers with a barrier to racemization exceeding 30 kcal/mol (t1/2 (37° C) > 

4.5 years) in both protic and aprotic solvents.  

We next sought to translate this halogenation into an enantioselective route. Inspired by work from 

Akiyama, we evaluated several chiral phosphoric acids (CPA) with N-bromosuccinimide (NBS) for the 

bromination of 68. Initially, the venerable CPA (R)-TRIPS 70 effected this reaction to near quantitative 
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the reaction. We also found that this chemistry could be translated to chlorination and iodination of N-aryl 

quinoids in good enantioselectivities with e.r.s >80:20.  

 

 
 

Scheme 13. Atroposelective phosphoric acid catalyzed bromination of N-aryl quinoids. 
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pharmaceutically relevant scaffolds through atroposelective SNAr and related processes. While the projects we 

have embarked on may seem disparate at times, they have all revolved around and have been inspired by the 

study of atropisomerism.  
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