## Supplementary Material

# Synthesis and DFT studies of novel aminoimidazodipyridines using 2-(3*H*-imidazo[4,5-*b*]pyrid-2-yl)acetonitrile as an efficient key precursor

Ahmed F. Darweesh, Nesma A. Abd El-Fatah, Samir A. Abdel-Latif, Ismail A. Abdelhamid,\* Ahmed H. M. Elwahy\* and Mostafa E. Salem

> Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt Email: <u>darweesh@sci.cu.edu.eg</u>, <u>ismail\_shafy@yahoo.com</u>, <u>aelwahy@hotmail.com</u>

## **Table of Contents**

| 1. | <sup>1</sup> H and <sup>13</sup> C NMR spectra for compounds <b>12a-e</b> ; <b>20</b> ; <b>22a,b</b> and <b>25a-d</b> | S1  |
|----|-----------------------------------------------------------------------------------------------------------------------|-----|
| 2. | Tables and figures of the theoretical calculation part                                                                | S21 |

## <sup>1</sup>H and <sup>13</sup>C NMR spectra









12a

























12d











12e





































### Theoretical calculation

Different quantum chemical parameters such as, bond lengths, bond angles, electronic dipole moment ( $\mu$ ) as well as first-order hyperpolarizability ( $\beta$ ) were calculated using DFT-B3LYP/6-311G\*\* level of calculation. Quantum mechanical calculations of geometries and energies were attained using the density functional theory with Becke's three parameter exchange functional method, the Lee-Yang-Parr correlation functional approach (B3LYP/DFT) combined with 6.31G(d,p) basis set.

#### Tables 1-3

**Table 1** Selected geometric bond lengths, bond angles and dihedral angles of the optimized 10, 11, 12, 14 and 16 usingB3LYP/6-311G\*\*

| Compound | d Bond lengths (Å) |       | Bond angles |         | Dihedral angles |          |
|----------|--------------------|-------|-------------|---------|-----------------|----------|
| 10       | N10-C12            | 1.304 | N10-C12-N11 | 113.552 | C3-C10-C12-N11  | 0.027    |
|          | N11-C12            | 1.380 | N11-C12-C14 | 120.609 | N10-C12-C14-C15 | 0.072    |
|          | C12-C14            | 1.504 | C12-C14-C15 | 113.535 | C12-C14-C15-N18 | -179.973 |
| 11       | C12-C13            | 1.363 | C2-C12-C13  | 131.674 | C2-C12-C13-C14  | 180.000  |
|          | C13-C14            | 1.432 | C12-C13-C14 | 119.212 | C2-C12-C13-C15  | 0.000    |
|          | C14-N14            | 1.552 | C13-C14-C16 | 179.700 | C12-C13-C15-N17 | -179.998 |
|          | C13-C15            | 1.428 | C13-C15-N17 | 179.019 | N17C15-C13-C14  | 0.002    |
| 12       | C9-C11             | 1.428 | C9-C11-C12  | 117.369 | C13-C11-C12-N17 | -176.879 |
|          | C11-C12            | 1.424 | C11-C12-N17 | 179.059 | C9-C11-C13-C14  | -0.148   |
|          | C12-N17            | 1.555 | C14-C13-C24 | 119.117 | C11-C13-C14-C16 | 177.419  |
|          | C11-C13            | 1.392 | C11-C13-C24 | 121.021 | C13-C14-C16-N18 | -179.389 |
|          | N10-C15            | 1.368 | C11-C13-C14 | 119.862 | C13-C14-C15-N21 | 179.799  |
|          | C14-C15            | 1.406 | C13-C14-C15 | 121.211 | C11-C13-C24-C29 | 123.976  |
| 14       | C12-C14            | 1.517 | N10-C12-C14 | 124.055 | N10-C12-C14-C15 | -99.885  |
|          | C14-C15            | 1.470 | C12-C14-15  | 108.551 | C12-C14-C15-N34 | -41.891  |
|          | C15-N34            | 1.152 | C14-15-N34  | 177.192 | C14-15-C16-C29  | 82.874   |
|          | C14-C16            | 1.565 | C12-C14-16  | 110.790 | C14-C16-C29-C31 | -163.236 |
|          | C16-C29            | 1.577 | C14-C16-C29 | 110.728 | C16-C29-C31-N36 | -17.300  |
|          | C29-C31            | 1.468 | C16-C29-C31 | 110.121 | C16-C29-C32-N35 | 110.651  |

| General Papers |         |       |             |         | ARKIVOC 2       | 021, <i>viii</i> , S1-S26 |
|----------------|---------|-------|-------------|---------|-----------------|---------------------------|
| 10             | C12-C13 | 1.508 | C12-C13-C14 | 112.639 | C12-C13-C14-N17 | 155.210                   |
|                | C13-C14 | 1.461 | C13-C14-N17 | 177.024 | C12-N11-C18-C19 | -54.336                   |
|                | C14-N17 | 1.151 | C12-N11-C18 | 133.957 | C18-C19-C32-N35 | 88.241                    |
|                | C12-N11 | 1.395 | N11-C18-C19 | 110.996 | C18-C19-C33-N36 | 118.941                   |
|                |         |       |             |         |                 |                           |

**Table 2** Total energy, energy of HOMO and LUMO, energy gap, ionization energy (I, eV), electron affinity (A, eV), absolute electronegativities, ( $\chi$ , eV), absolute hardness ( $\eta$ , eV), global softness (S, eV<sup>-1</sup>) chemical potential ( $\pi$ , eV<sup>-1</sup>) global electrophilicity ( $\boldsymbol{\omega}$ , eV), additional electronic charge,  $\Delta N_{max}$ , of **10**, **11**, **12**, **13**, **14** and **16** usingB3LYP/6-311G\*\*

| Parameter              | 10      | 11      | 12      | 13      | 14      | 16      |
|------------------------|---------|---------|---------|---------|---------|---------|
| E <sub>T</sub> , eV    | -14350  | -13436  | -27762  | -27744  | -27771  | -27771  |
| Е <sub>номо</sub> , eV | -6.7891 | -7.3929 | -6.1690 | -5.9867 | -6.8653 | -6.9795 |
| E <sub>LUMO</sub> , eV | -1.5150 | -3.0926 | -2.8478 | -3.2776 | -1.7789 | -1.8170 |
| E <sub>g</sub> , eV    | 5.2741  | 4.3003  | 3.3212  | 2.7091  | 5.0864  | 5.1625  |
| l, eV                  | 6.7920  | 7.3958  | 6.1713  | 5.9867  | 6.8653  | 6.9795  |
| A, eV                  | 1.5162  | 3.0937  | 2.8480  | 3.2776  | 1.7789  | 1.8170  |
| χ, eV                  | 4.1541  | 5.2448  | 4.5096  | 4.6322  | 4.2160  | 4.3983  |
| η, eV                  | 2.6379  | 4.3540  | 3.0018  | 1.3546  | 2.5432  | 2.5813  |
| S, eV                  | 0.1895  | 0.2324  | 0.3009  | 0.3691  | 0.1966  | 0.1937  |
| π, eV                  | -4.1541 | -5.2448 | -4.5096 | -4.6322 | -4.2160 | -4.3983 |
| <i>ω</i> , eV          | 3.2709  | 3.1589  | 3.3874  | 7.9444  | 3.4945  | 3.7472  |
| $\Delta N_{max.}$      | 1.5748  | 1.205   | 1.5023  | 3.4196  | 3.4196  | 1.6980  |

#### **General Papers**

**Table 3** Calculated total static dipole moment ( $\mu$ ), the mean polarizability < $\alpha$ >, anisotropy of the polarizability  $\Delta \alpha$  and the first-order hyperpolarizability < $\beta$  > configuration for the studied **10**, **11** and **12** compounds using B3LYP/6-311G\*\*

| Property    | Urea                     | 10                       | 11                        | 12                        |
|-------------|--------------------------|--------------------------|---------------------------|---------------------------|
| μ, D        | 1.3197                   | 4.4076                   | 6.6808                    | 5.3942                    |
| αxx, a.u.   | -                        | -78.3987                 | -78.8622                  | -104.9788                 |
| αγγ         | -                        | -64.3772                 | -71.7942                  | -159.5939                 |
| αzz         | -                        | -69.0925                 | -71.2991                  | -135.1699                 |
| αχγ         | -                        | 19.7622                  | -1.1918                   | 6.1289                    |
| αχΖ         | -                        | -0.0081                  | 0                         | -0.6286                   |
| αγΖ         | -                        | -0.0032                  | 0                         | 5.923                     |
| <a> esu</a> | -                        | -1.046610 <sup>-23</sup> | -1.0965x10 <sup>-23</sup> | -1.9747x10 <sup>-23</sup> |
| Δα, esu     | -                        | 1.8315x10 <sup>-24</sup> | 1.0860x10 <sup>-24</sup>  | 7.0226x10 <sup>-24</sup>  |
| βххх        | -                        | 107.9435                 | 137.5982                  | 68.0475                   |
| βхху        | -                        | -35.7904                 | 23.0194                   | -29.3381                  |
| βxyy        | -                        | 3.8275                   | 41.3742                   | 86.8542                   |
| βγγγ        | -                        | -13.2108                 | -27.6441                  | 60.184                    |
| βxxz        | -                        | 0.0317                   | 0.0003                    | 4.4649                    |
| βxyz        | -                        | -0.0067                  | 0.0002                    | -23.092                   |
| βyyz        | -                        | 0.0142                   | 0                         | -4.7334                   |
| βxzz        | -                        | -8.1671                  | -6.8291                   | -13.2092                  |
| βyzz        | -                        | -4.5171                  | 0.9181                    | 1.243                     |
| βzzz        | -                        | 0.004                    | 0                         | -0.2449                   |
| <β>, esu    | 0.1947x10 <sup>-30</sup> | 1.0074x10 <sup>-30</sup> | 1.4875x10 <sup>-30</sup>  | 1.2551x10 <sup>-30</sup>  |



**Fig. 2.** Optimized geometry, numbering system and vector of dipole moment of **10**, **11**, **12** and **13**, **14** and **16** using B3LYP/ 6-311G\*\*.



Fig. 3. HOMO and LUMO molecular orbital maps of the studied 10, 11 and 12 using B3LYP/6-311G\*\* level.



Fig. 4 Theoretical IR spectrum of 6a using B3LYP6-31G(d,p)



Fig. 5 Theoretical UV spectrum of 6a using B3LYP6-31G(d,p)