Supplementary Material

Comparison of affinity ranking by target-directed dynamic combinatorial chemistry and surface plasmon resonance

Priska Frei, Marleen Silbermann, Tobias Mühlethaler, Xiaohua Jiang, Oliver Schwardt, Rachel Hevey, and Beat Ernst*

Table of Contents

Surface Plasmon Resonance Experiments	S2
Fluorescence Polarization Assay	S4
HPLC Traces of DCC Experiments	S6
Purity of Target Compounds	S6
HRMS of Target Compounds	S6
HPLC of Target Compounds	S7
HPLC Traces of Target Compounds	S8
¹ H & ¹³ C NMR Spectra of Target Compounds	S14
References	S37

Surface Plasmon Resonance Experiments

According to an established procedure, ^{S1} SPR experiments were conducted using a Biacore T200 system (GE Healthcare). In brief, dilution series with two-fold increasing concentrations were delivered over a streptavidin (SA) chip with immobilized FimH_{FL-B}. The reference cell was capped with biotin-poly(ethylenglycol)amine. Starting from stock solutions of compounds (50 mM in DMSO), dilution series were prepared in buffer (HBS-EP; GE Healthcare). Compounds were injected for 180 s at a flow rate of 30 μ L/min, followed by an 800 s dissociation phase. The sensorgrams were referenced and blank subtracted and fitted according to a 1:1 binding model. Complete data are given in Table S1 and the sensorgrams are depicted in Figure S1.

	<i>k</i> on [1/Ms]	Compound	<i>K</i> ₀ [nM]	t _{1/2} [s]
3 a	6.18·10 ⁵	0.22	359	3.13
3c	2.93·10 ⁵	0.11	358	6.60
3d	4.31·10 ⁵	0.12	267	6.03
3e	3.92·10 ⁵	0.19	492	3.59
3g	4.41·10 ⁵	0.20	461	3.41
3h	4.41·10 ⁵	0.28	642	2.45
Зј	4.61·10 ⁵	0.21	462	3.26
3k	4.23·10 ⁵	0.18	427	3.84
31	9.52·10 ⁵	0.05	508	14.3
3m	5.86·10 ⁵	0.28	484	2.44
3n	5.62·10 ⁵	0.22	390	3.16
30	4.87·10 ⁵	0.21	440	3.24
3р	5.35·10 ⁵	0.20	377	3.44
3q	$1.56 \cdot 10^{5}$	0.04	286	15.6
3r	4.49·10 ⁵	0.15	337	4.57
3s	4.96·10 ⁵	0.27	536	2.60
3t	3.09·10 ⁵	0.12	376	5.96

Table S1. Results from SPR measurements.

Figure S1. Multi-cycle kinetics of FimH_{FL-B} with two-fold increasing concentrations of A) **3a** (24-750nM); B) **3c** (24-750 nM); C) **3d** (24-750 nM); D) **3e** (24-1500 nM, without 47 nM); E) **3g** (39-2500 nM); F) **3h** (47-1500 nM); G) **3j** (39-1250 nM); H) **3k** (24-1500 nM, without 47 nM); I) **3l** (40-1250 nM); J) **3m** (31-1000 nM); K) **3n** (24-750 nM); L) **3o** (31-1000 nM); M) **3p** (24-750 nM); N) **3q** (24-750 nM); O) **3r** (31-1000 nM); P) **3s** (31-1000 nM); Q) **3t** (24-750 nM).

Fluorescence Polarization Assay

Experiments were conducted as previously described,^{S2-3} using a non-biotinylated version of the full-lenth FimH protein (FimH_{FL}) and a fluorescently labeled FimH antagonist (**11**, Figure S2),^{S2} whose $K_D = 137$ nM for FimH_{FL} has been previously determined in a direct binding assay.^{S3} Stock solutions of the compounds at 50 mM in DMSO were prepared. Starting from 600 μ M, 1:2 dilution series were prepared in assay buffer (20 mM HEPES buffer, 150 mM NaCl, 50 μ g/mL BSA, pH 7.4). Measurements were done at constant concentrations of FimH_{FL} (300 nM) and fluorescently labeled antagonist (10 nM). The mixtures were incubated for 1 h in 96-wellplates (Corning, flat bottom, non-binding surface). Fluorescence polariza-tion was measured with a SynergyTM H1 Multi-Mode microplate reader (BioTek Intruments). Equilibrium dissociation constants were determined using Prism (GraphPad Software) and the Wang equation.^{S4} The results are depicted in Table S2.

Figure S2. Fluorescently labeled FimH antagonist 11 used in the fluorescence polarization assay. ^{52,53}

Table S2. Affinities obtained by fluorescent polarization assay.

HPLC Traces of DCC Experiments

Purity of Target Compounds

HRMS of Target Compounds

The LC/HRMS analysis were carried out using an Agilent 1100 LC equipped with a photodiode array detector and a Micromass QTOF I equipped with a 4 GHz digital-time converter. The results are summarized in Table S9.

 Table S7. Results of HRMS analysis of acylhydrazones and bioisosteres.

Compound	Formula for [M+Na] ⁺	HRMS [m/z]	
		calcd	found
За	C19H20FN3NaO7	444.1183	444.1181
3c	$C_{18}H_{20}FN_3NaO_7S$	464.0904	464.0905
3d	C ₁₉ H ₂₂ FN ₃ NaO ₇ S	478.1060	478.1061
Зе	$C_{19}H_{19}CIFN_3NaO_7$	478.0793	478.0799
Зg	C ₁₉ H ₂₂ FN ₃ NaO ₇	446.1339	446.1341
3h	$C_{19}H_{21}FN_2NaO_8$	447.1182	447.1182
Зј	$C_{21}H_{23}FN_2NaO_8$	473.1336	473.1336
3k	C22H22FN3NaO7	482.1339	482.1340
31	C ₂₃ H ₂₄ FN ₃ NaO ₇	496.1496	496.1496
3m	$C_{21}H_{23}FN_2NaO_7$	457.1387	457.1387
3n	C ₁₉ H ₂₁ FN ₂ NaO ₇ S	463.0951	463.0954
30	$C_{20}H_{20}CIFN_2NaO_7$	477.0841	477.0841
Зр	C19H20CIFN2NaO7S	497.0561	497.0561
3q	$C_{18}H_{18}CIFN_2NaO_7S$	483.0405	483.0406
3r	$C_{24}H_{23}FN_2NaO_7$	493.1387	493.1388
3s	$C_{21}H_{20}F_4N_2NaO_7$	511.1104	511.1107
3t	$C_{22}H_{20}CIFN_2NaO_7S$	533.0561	533.0562
5	C ₂₀ H ₂₃ FN ₂ NaO ₇	445.1387	445.1386
6	C ₂₀ H ₂₃ FN ₂ NaO ₇	445.1387	445.1392
7	$C_{20}H_{23}FN_2NaO_7$	445.1387	445.1385
8	C ₂₀ H ₂₃ FN ₂ NaO ₆ S	461.1159	461.1161
9	$C_{20}H_{23}FN_2NaO_6S$	461.1159	461.1160
10	C ₂₁ H ₂₂ FNNaO ₈	458.1227	458.1227

HPLC of Target Compounds

System: Agilent 1100/1200 with UV detector (190-410 nm) and Agilent 380 ELSD detector. Column: Waters Atlantis T3, 3 μ m, 2.1 × 100 mm (Waters Corporation). A: H₂O + 0.01% TFA; B: MeCN + 0.01% TFA. Detection: Light scattering (Nebulizer control 70%, drift tube temperature 50 °C, gas pressure 50 psi, gain 500). Gradient: 5% B \rightarrow 95% B (20 min); flow rate: 0.5 mL/min. The results of the purity analysis are summarized in Table S8.

Compound	Retention time [min]	Purity (%)
За	5.990	>99.50
3c	7.316	>99.50
3d	7.247	>99.50
Зе	7.484	>99.50
3f ¹	7.627	>99.50
Зg	7.625	>99.50
3h	7.667	>99.50
3j	7.922	>99.50
3k	7.937	>99.50
31	8.142	>99.50
3m	8.335	>99.50
3n	8.289	>99.50
30	8.718	>99.50
Зр	8.871	>99.50
3q	8.885	>99.50
3r	9.214	>99.50
3 s	9.335	>99.50
3t	9.858	>99.50
3u ¹	10.087	>99.50
5	7.677	>99.50
6	8.178	>99.50
7	8.380	>99.50
8	8.849	>99.50
9	7.960	>99.50
10	7.962	>99.50

 Table S8. HPLC analysis of target compounds.

HPLC Traces of Target Compounds

¹H & ¹³C NMR Spectra of Target Compounds

andrápan (mathalin).

100 f1 (ppm) 90

i de la compación de la compaci

AV)

150

160

140

170

130 120

100 90 f1 (ppm)

110

60 50

40

30 20 10

70

80

References

- 1. Frei, P.; Pang, L.; Silbermann, M.; Eriş, D.; Mühlethaler, T.; Schwardt, O.; Ernst, B., Target-directed Dynamic Combinatorial Chemistry: A Study on Potentials and Pitfalls as Exemplified on a Bacterial Target. *Chem. Eur. J.* **2017**, *23*, 11570-11577.
- Kleeb, S.; Pang, L.; Mayer, K.; Eris, D.; Sigl, A.; Preston, R. C.; Zihlmann, P.; Sharpe, T.; Jakob, R. P.; Abgottspon, D.; Hutter, A. S.; Scharenberg, M.; Jiang, X.; Navarra, G.; Rabbani, S.; Smiesko, M.; Lüdin, N.; Bezençon, J.; Schwardt, O.; Maier, T.; Ernst, B., FimH Antagonists: Bioisosteres To Improve the in Vitro and in Vivo PK/PD Profile. *J. Med. Chem.* **2015**, *58*, 2221-2239.
- 3. Mayer, K.; Eris, D.; Schwardt, O.; Sager, C. P.; Rabbani, S.; Kleeb, S.; Ernst, B., Urinary Tract Infection Which Conformation of the Bacterial Lectin FimH Is Therapeutically Relevant? *J. Med. Chem.* **2017**, *60*, 5646-5662.
- 4. Wang, Z.-X., An exact mathematical expression for describing competitive binding of two different ligands to a protein molecule. *FEBS Lett.* **1995**, *360*, 111-114.