Supplementary Material

Synthesis of nucleoside analogues using acyclic diastereoselective reactions

Tommy Lussier,^{a,b} Marie-Ève Waltz,^a Garrett Freure,^a Philippe Mochirian,^a Starr Dostie,^a Michel Prévost,^a and Yvan Guindon^{*a,b}

^a Bio-organic Chemistry Laboratory, Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec, H2W 1R7, Canada ^b Department of Chemistry, Université de Montréal, Montréal, Québec, H3C 3J7, Canada Email: <u>yvan.guindon@ircm.qc.ca</u>

Table of Contents

Part I. Stereochemical Proofs	S2
Part II. X-ray for acetonide S20a	S12
Part III. Computational Data	S15
 Part IV. ¹H and ¹³C spectra 8a, 8b,12, 13, 14, 15, S1, 6, 5a, 5b, 16, S2, S3, S4, 17, 18a, 18b, S5, S6, 19, S S20b, 21, 22a, 22b, S7, S8, 23, 24a, 24b, S9, S10, S11, 25, 26a, 26b, S13, S14, 27, 28a, 28b, 4, 29, 30, 32, 33, 34, 35, 36, 37, S15a, S15b, S16, S17, S18, S19a, S19b, S20a, S20b, S21a, S21b, S22a, S22b, S2 	20a, 31, 3a,
S23b, S24a, S24b	S18
References	S154

Part I. Stereochemical Proofs

Diastereoselective Mukaiyama Aldol Reaction - The *anti*-stereochemistry of methyl ester **8a,b** obtained in the Mukaiyama aldol reaction was previously confirmed by our lab.¹

Diastereoselective Atom Transfer Cyclization - The *syn* stereochemistry of methyl ester **12** for the intramolecular vinyl transfer reaction was indirectly confirmed from the X-ray structure of acetonide **S20a**. See below for experimental procedures and full characterization of **S20a**. In addition, the stereochemistry for this transformation was confirmed in the final nucleoside analogues.

Diastereoselective Cyanation - The relative stereochemistry of the racemic cyanohydrins (Table 1) was determined by relevant nuclear Overhauser effect [nOe] enhancements and supported by ¹³C NMR data. The two cyanohydrin diastereomers were separated, deprotected to the corresponding diols and then protected as an acetonide. See below for experimental procedures and full characterization. The relative stereochemistry of the syn and anti acetonides was determined from 1D NOESY and the ¹³C chemical shifts of the acetal carbon and the gem-dimethyl substituents. According to Rychnovsky's study,² the difference in chemical shifts between the gem-dimethyl groups is an indicator of stereochemistry, with syn acetonides having a difference of >9 ppm (methyl shifts around 19 and 30 ppm) and *anti*-isomers showing a difference of <5 ppm (methyl shifts around 25 ppm). The chemical shift of the acetal carbon is also an indicator of the relative stereochemistry, with syn-acetonides having chemical shifts below 99.5 ppm and anti-acetals above 100.5 ppm. In Rychnovsky's study, some inconsistencies were observed in the presence of a nitrile substituent. In this study, the shift of the acetal carbon of all syn acetonides was around 100.5 ppm and around 102 ppm for anti acetonides. In addition, for substrates in which the gem-dimethyl groups of the acetonide could be clearly identified, the syn acetonides had a difference of 9 ppm between the methyl groups located around 19 and 30 ppm while the *anti* acetonides showed a difference of 5 ppm with methyl shifts around 25 ppm, consistent with Rychnovsky's study. Based on this and NOESY correlations, the proof of structures for cyanohydrins 5a,b, 20a,b, 22a,b, 26a,b and 28a,b were determined.

Acetal Carbon : 100.7 ppm Gem-dimethyls: 29.5 and 18.8 ppm

Acetal Carbon : 102.4 ppm Gem-dimethyls: 27.4 and 22.4 ppm

S15b

Acetal Carbon : 100.4 ppm

Acetal Carbon : 101.8 ppm

Chemical displacements of acetonide gem-dimethyl substituents were difficult to identify.

Chemical displacements of acetonide gem-dimethyl substituents were difficult to identify.

The proof of structure for cyanohydrins **24a,b** was determined through X-ray crystallography of the corresponding acetonide.

Diastereoselective Thioaminal Formation and Intramolecular Cyclization - Proof of structure for the protected nucleoside analogue **32** and the final deprotected analogue **36** was determined by 2D NOESY experiments thus confirming the 1,2-*syn* diastereoselectivity for nucleobase addition to the dithioacetal followed by O4'-C1 cyclization with inversion of configuration providing the 1',2'-*trans* nucleoside analogue.

Cyanohydrins 5a,b, 20a,b and 22a,b:

To a solution of cyanohydrin **5a** (24 mg, 0.064 mmol, 1.0 equiv.) in dry THF (0.64 mL, 0.10 M) at 0 °C, HFpyridine (0.13 mL, 0.13 mmol, 2.0 mL/mmol) was added. The solution was warmed to room temperature and stirred overnight. An aqueous solution of NaHCO₃ was added and the aqueous layer extracted with Et_2O (3x). The organic layers were combined, dried with MgSO₄, filtered and concentrated in vacuo. Purification by flash chromatography using 35:65 EtOAc:Hex provided **22a** (10 mg, 59% yield) as a clear oil. Characterization data for **22a** can be found in the experimental section.

Cyanohydrin **20a** was diluted in MeOH and a few drops of TFA were added. Concentration of the reaction mixture provided **22a**.

(±)-(4R,5R,6S)-6-(benzyloxymethyl)-2,2,5-trimethyl-5-vinyl-1,3-dioxane-4-carbonitrile (S15a):

To a solution of diol **22a** (8.4 mg, 0.032 mmol, 1.0 equiv.) in dry CH₂Cl₂ (0.3 mL, 0.1 M) at 0 °C, 2methoxypropene (12 µL, 0.13 mmol, 4.0 equiv.) and camphor sulfonic acid (1.5 mg, 0.0060 mmol, 0.20 equiv.) were added. The solution was stirred 15 minutes at 0 °C then warmed to room temperature for 45 minutes. An aqueous solution of NH₄Cl was added and the aqueous layer was extracted with Et₂O(3x). The organic layers were combined, dried with MgSO₄, filtered and concentrated in vacuo. Purification by flash chromatography using 20:80 EtOAc:Hex provided acetonide **S15a** as a clear oil (8.3 mg, 86% yield): R_f= 0.21 (20:80 EtOAc:Hex); Molecular Formula: C₁₈H₂₃NO₃; MW: 301.39; IR (neat) u_{max} 2251 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.38 – 7.27 (m, 5H), 6.26 (dd, *J* 17.8, 11.0 Hz, 1H), 5.42 (d, *J* 11.0 Hz, 1H), 5.25 (d, *J* 17.8 Hz, 1H), 4.60 (s, 1H), 4.56 (d, *J* 12.1 Hz, 1H), 4.45 (d, *J* 12.1 Hz, 1H), 3.92 (dd, *J* 6.3, 3.6 Hz, 1H), 3.50 (dd, *J* 10.8, 3.6 Hz, 1H), 3.34 (dd, *J* 10.7, 6.3 Hz, 1H), 1.51 (s, 3H), 1.50 (s, 3H), 1.11 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃) δ 138.1, 134.0, 128.6, 127.9, 127.8, 118.7, 115.8, 100.7, 76.4, 73.6, 70.6, 70.4, 40.9, 29.5, 18.8, 17.0 ppm; HRMS calcd for C₁₈H₂₃O₃NNa [M+Na⁺]: 324.1570, found 324.1572 (+0.5 ppm).

To a solution of cyanohydrin **5b** (29 mg, 0.078 mmol, 1.0 equiv.) in dry THF (0.8 mL, 0.1 M) at 0 °C, HF-pyridine (0.16 mL, 0.16 mmol, 2.0 mL/mmol) was added. The solution was warmed to room temperature and stirred overnight. An aqueous solution of NaHCO₃ was added and the aqueous layer was extracted with Et₂O (3x). The organic layers were combined, dried with MgSO₄, filtered and concentrated in vacuo. Purification by flash chromatography using 35:65 EtOAc:Hex provided **22b** (12.7 mg, 63% yield) as a clear oil. Characterization data for **22b** can be found in the experimental section.

Cyanohydrin **20b** was diluted in MeOH and a few drops of TFA were added. Concentration of the reaction mixture provided **22b**.

(±)-(4*S*,5*R*,6*S*)-6-((benzyloxy)methyl)-2,2,5-trimethyl-5-vinyl-1,3-dioxane-4-carbonitrile (S15b):

To a solution of diol **22b** (9.4 mg, 0.036 mmol, 1.0 equiv.) in dry CH_2Cl_2 (0.6 mL, 0.1 M) at 0 °C, 2-methoxypropene (14 μ L, 0.14 mmol, 4.0 equiv.) and camphor sulfonic acid (1.7 mg, 0.0070 mmol, 0.20

equiv.) were added. The solution was stirred for 15 minutes at 0 °C then warmed to room temperature for 45 minutes. An aqueous solution of NH₄Cl was added and the aqueous layer was extracted with Et₂O (3x). The organic layers were combined, dried with MgSO₄, filtered and concentrated in vacuo. Purification by flash chromatography using 20:80 EtOAc:Hex provided acetonide **S15b** as a clear oil (9.3 mg, 86% yield): R_f = 0.32 (20:80 EtOAc:Hex); Molecular Formula: C₁₈H₂₃NO₃; MW: 301.39; IR (neat) u_{max} 2992, 2873, 1383 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.37 – 7.27 (m, 5H), 6.08 (dd, *J* 17.6, 11.0 Hz, 1H), 5.27 (d, *J* 10.9 Hz, 1H), 5.20 (d, *J* 17.6 Hz, 1H), 4.58 (d, *J* 12.1 Hz, 1H), 4.47 (d, *J* 12.1 Hz, 1H), 4.42 (s, 1H), 4.04 (dd, *J* 6.9, 3.7 Hz, 1H), 3.45 (dd, *J* 10.8, 3.7 Hz, 1H), 3.39 (dd, *J* 10.8, 7.0 Hz, 1H), 1.62 (s, 3H), 1.45 (s, 3H), 1.24 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃) δ 138.1, 136.6, 128.6, 127.8, 127.7, 117.29, 117.28, 102.4, 74.5, 73.5, 69.8, 68.4, 42.1, 27.4, 22.4, 17.8 ppm; HRMS calcd for C₁₈H₂₄O₃NNa [M+H⁺]: 302.17507, found 302.17510 (+0.1 ppm).

Cyanohydrins 24a,b:

The relative stereochemistry of cyanohydrins **24a** and **24b** was determined by X-ray diffraction of *syn*acetonide **S20a**. Acetonides **S20a,b** were obtained from the corresponding diols **S19a,b** resulting from cyanation of aldehyde **S18**. From this, the relative stereochemistry of cyanohydrin **24a** could be determined. Cleavage of the two silyl protecting groups of **24a** resulted in the corresponding triol. The primary alcohol was selectively protected providing **S19a** which corresponded to the diol with *syn* relative stereochemistry. The X-ray structure of **S20a** also confirms the relative 3,4-*syn* stereochemistry for the intramolecular vinyl transfer.

(±)-(S)-methyl 2-(S)-3,3-diethyl-9,9-dimethyl-8,8-diphenyl-4,7-dioxa-3,8-disiladecan-5-yl)-2-methylbut-3-enoate (S16):

[©]ARKAT USA, Inc

To a solution of (*S*)-methyl 2-((*S*)-2-((tert-butyldiphenylsilyl)oxy)-1-hydroxyethyl)-2-methylbut-3-enoate³ (0.35 g, 0.84 mmol, 1.0 equiv.) in anhydrous CH₂Cl₂ (28 mL, 0.10 M) at 0 °C, 2,6-lutidine (0.13 mL, 1.1 mmol, 1.3 equiv.) and TBSOTf (0.21 mL, 0.92 mmol, 1.2 equiv.) were added. The solution was stirred 4 hours at 0 °C. An aqueous solution of NH₄Cl was added to the reaction mixture and the aqueous layer was extracted with Et₂O (3x). The organic layers were combined, dried over MgSO₄, filtered and concentrated in vacuo. Purification by flash chromatography using 10:90 EtOAc:Hex provided protected ester **S16** as a clear oil (0.38 g, 85% yield): $R_f = 0.5$ (10:90 EtOAc:Hex); Molecular Formula: $C_{30}H_{46}O_{4}Si_2$; MW: 526.86; IR (neat) u_{max} 1737 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.68 – 7.63 (m, 4H), 7.46 – 7.36 (m, 6H), 6.11 (dd, *J* 17.6, 10.8 Hz, 1H), 5.14 (dd, *J* 10.9, 1.0 Hz, 1H), 5.04 (dd, *J* 17.7, 1.0 Hz, 1H), 4.21 (t, *J* 5.6 Hz, 1H), 3.58 (s, 3H), 3.58 – 3.53 (m, 1H), 3.47 (dd, *J* 10.8, 5.6 Hz, 1H), 1.24 (s, 3H), 1.05 (s, 9H), 0.88 (t, *J* 8.0 Hz, 9H), 0.53 (q, *J* 7.8 Hz, 6H) ppm; ¹³C NMR (126 MHz, CDCl₃) δ 175.1, 139.1, 135.83, 135.78, 133.44, 133.35, 129.82, 129.79, 127.80, 127.78, 114.8, 77.7, 66.5, 53.7, 52.0, 27.0, 19.3, 16.1, 7.0, 5.2 ppm; HRMS calcd for C₃₀H₄₇O₄Si₂[M+H⁺]: 527.3007, found 527.3010 (+0.4 ppm).

(±)-(*R*)-2-((S)-3,3-diethyl-9,9-dimethyl-8,8-diphenyl-4,7-dioxa-3,8-disiladecan-5-yl)-2-methylbut-3-en-1-ol (S17):

Following General Procedure A and purification by flash chromatography using 10:90 EtOAc:Hex, primary alcohol **S17** was obtained as a clear oil (0.47 g, 89% yield): R_f = 0.28 (10:90 EtOAc:Hex); Molecular Formula: C₂₉H₄₆O₃Si₂; MW: 498.85; IR (neat) ν_{max} 3454 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.68 – 7.64 (m, 4H), 7.47 – 7.35 (m, 6H), 5.83 (dd, *J* 17.7, 11.0 Hz, 1H), 5.04 (dd, *J* 11.0, 1.4 Hz, 1H), 4.98 (dd, *J* 17.7, 1.4 Hz, 1H), 3.76 – 3.69 (m, 2H), 3.61 (dd, *J* 10.9, 6.5 Hz, 1H), 3.54 (dd, *J* 10.0, 3.9 Hz, 1H), 3.50 (dd, *J* 10.9, 6.1 Hz, 1H), 2.72 (t, *J* 6.0 Hz, 1H), 1.06 (s, 9H), 1.04 (s, 3H), 0.89 (t, *J* 7.9 Hz, 9H), 0.56 (q, *J* 7.9 Hz, 6H) ppm; ¹³C NMR (126 MHz, CDCl₃) δ 141.4, 135.9, 135.8, 133.2, 133.1, 129.92, 129.91, 127.86, 127.83, 114.5, 79.8, 68.7, 66.7, 45.8, 27.0, 19.3, 18.4, 7.0, 5.1 ppm; HRMS calcd for C₂₉H₄₇O₃Si₂ [M+H⁺]: 499.3058, found 499.3057 (-0.3 ppm).

(±)-(*S*)-2-((S)-3,3-diethyl-9,9-dimethyl-8,8-diphenyl-4,7-dioxa-3,8-disiladecan-5-yl)-2-methylbut-3-enal (S18):

Following General Procedure B and purification by flash chromatography using 5:95 EtOAc:Hex provided aldehyde **S18** as a clear oil (0.35 g, 85 % yield): $R_f = 0.28$ (5:95 EtOAc:Hex); Molecular Formula: $C_{29}H_{44}O_3Si_2$; MW: 496.84; IR (neat) u_{max} 1728 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 9.66 (s, 1H), 7.69 – 7.62 (m, 4H), 7.48 – 7.37 (m, 6H), 6.07 (dd, *J* 17.8, 10.9 Hz, 1H), 5.27 (dd, *J* 11.0, 0.9 Hz, 1H), 5.11 (dd, *J* 17.8, 0.9 Hz, 1H), 4.04 (dd, *J* 6.6, 4.7 Hz, 1H), 3.58 (dd, *J* 10.7, 6.6 Hz, 1H), 3.52 (dd, *J* 10.7, 4.7 Hz, 1H), 1.19 (s, 3H), 1.05 (s, 9H), 0.85 (t, *J* 7.9 Hz, 9H), 0.49 (q, *J* 7.9 Hz, 6H) ppm; ¹³C NMR (126 MHz, CDCl₃) δ 201.7, 137.2, 135.82, 135.79, 133.04, 132.96, 129.9, 127.86, 127.85, one aromatic carbon missing, 117.1, 76.7, 65.6, 56.9, 26.9, 19.2, 14.3, 6.9, 5.1 ppm; HRMS calcd for $C_{29}H_{45}O_3Si_2$ [M+H⁺]: 497.2902, found 497.2898 (-0.7 ppm).

(±)-(2*R*, 3*R*)-3-((*S*)-2-(*tert*-butyldiphenylsilyloxy)-1-hydroxyethyl)-2-hydroxy-3-methylpent-4-enenitrile (S19a) and (±)-(2*S*, 3*R*)-3-((*S*)-2-(*tert*-butyldiphenylsilyloxy)-1-hydroxyethyl)-2-hydroxy-3-methylpent-4-enenitrile (S19b):

To a solution of aldehyde S18 (70 mg, 0.14 mmol, 1.0 equiv.) in anhydrous CH₂Cl₂ (1.9 mL, 0.10 M) at 0 °C, BF₃·OEt₂ (36 uL, 0.29 mmol, 1.5 equiv.) was added. The reaction mixture was stirred 5 minutes for precomplexation. TMSCN (51 µL, 0.38 mmol, 2.0 equiv.) was then added and the solution was stirred 1 hour at 0 °C. An aqueous solution of NaHCO₃ was poured into the reaction mixture and the aqueous layer was extracted with Et₂O (3x). The organic layers were combined, dried over MgSO₄, filtered and concentrated in vacuo. ¹H NMR spectroscopic analysis of the crude reaction indicated a ~1:2.5 mixture of 2,4-syn and anti diastereomers. Purification by flash chromatography using 25:75 EtOAc:Hex provided cyanohydrins **S19a** and **S19b** (33.1 mg, 58% yield) as clear oils. **S19a**: $R_f = 0.27$ (25:75 EtOAc:Hex); Molecular Formula: C₂₄H₃₁NO₃Si; MW: 409.60; IR (neat) υ_{max} 3436, 2248 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.68 – 7.60 (m, 4H), 7.50 – 7.37 (m, 6H), 6.07 (dd, J 17.7, 11.0 Hz, 1H), 5.35 (dd, J 11.0, 0.8 Hz, 1H), 5.20 (dd, J 17.7, 0.9 Hz, 1H), 4.65 (d, J 4.0 Hz, 1H), 3.84 (ddd, J 8.4, 3.8, 2.0 Hz, 1H), 3.67 (dd, J 10.5, 3.9 Hz, 1H), 3.64 (d, J 3.9 Hz, 1H), 3.58 (dd, J 10.5, 8.4 Hz, 1H), 2.98 (d, J 2.0 Hz, 1H), 1.07 (s, 9H), 1.01 (s, 3H) ppm; ¹³C NMR (100.6 MHz, CDCl₃) δ 135.62, 135.60, 135.2, 132.5, 130.3, 130.2, 128.11, 128.08, one aromatic carbon missing, 119.2, 118.1, 76.5, 68.7, 64.2, 46.7, 26.9, 19.3, 15.8 ppm; HRMS calcd for C₂₄H₃₂O₃NSi [M+H⁺]: 410.2146, found 410.2147 (+0.3 ppm). S19b: $R_f = 0.23$ (25:75 EtOAc:Hex); IR (neat) u_{max} 3437, 2247 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.68 – 7.60 (m, 4H), 7.49 – 7.38 (m, 6H), 6.09 (dd, J 17.7, 11.0 Hz, 1H), 5.26 (d, J 11.0 Hz, 1H), 5.14 (d, J 17.7 Hz, 1H), 4.39 (d, J 9.4 Hz, 1H), 4.36 (d, J 9.2 Hz, 1H), 4.09 (ddd, J 9.1, 3.4, 1.8 Hz, 1H), 3.63 (dd, J 10.4, 3.3 Hz, 1H), 3.53 (dd, J 10.4, 9.0 Hz, 1H), 3.19 (d, J 1.8 Hz, 1H), 1.07 (s, 9H), 0.98 (s, 3H) ppm; ¹³C NMR (100.6 MHz, CDCl₃) δ 135.61, 135.58, 135.4, 132.6, 132.5, 130.3, 130.2, 128.11, 128.08, 118.7, 117.8, 76.2, 70.7, 64.2, 45.1, 27.0, 19.3, 16.6 ppm; HRMS calcd for C₂₄H₃₁O₃NSiNa [M+Na⁺]: 432.1965, found 432.1964 (-0.4 ppm).

(±)-(4*R*, 5*R*, 6*S*)-6-((*tert*-butyldiphenylsilyloxy)methyl)-2,2,5-trimethyl-5-vinyl-1,3-dioxane-4-carbonitrile (S20a) and (±)-(4*S*, 5*R*, 6*S*)-6-((*tert*-butyldiphenylsilyloxy)methyl)-2,2,5-trimethyl-5-vinyl-1,3-dioxane-4-carbonitrile (S20b):

To a solution of diol **S19a,b** (33 mg, 0.081 mmol, 1.0 equiv.) in dry CH_2CI_2 (0.8 mL, 0.1 M) at 0 °C, 2methoxypropene (31 µL, 0.32 mmol, 4.0 equiv.) and camphor sulfonic acid (4.0 mg, 0.016 mmol, 0.20 equiv.) were added. The solution was stirred for 15 minutes at 0 °C then warmed to room temperature for 45 minutes. An aqueous solution of NH₄Cl was added and the aqueous layer was extracted with Et₂O (3x). The organic layers were combined, dried with MgSO₄, filtered and concentrated in vacuo. Purification by flash chromatography using 10:90 EtOAc:Hex provided acetonide **S20a,b** (39.5 mg, quantitative yield). **S20a**: R_f = 0.23 (10:90 EtOAc:Hex); Molecular Formula: C₂₇H₃₅NO₃Si; MW:449.67; IR (neat) u_{max} 3072, 2995, 2884, 1109 cm⁻¹; ¹H NMR (500 MHz, CDCI₃) δ 7.67 – 7.63 (m, 4H), 7.47 – 7.35 (m, 6H), 6.17 (dd, *J* 17.8, 11.0 Hz, 1H), 5.35 (dd, *J* 11.0, 1.0 Hz, 1H), 5.18 (dd, *J* 17.8, 1.0 Hz, 1H), 4.51 (s, 1H), 3.74 (dd, *J* 6.5, 4.0 Hz, 1H), 3.68 (dd, *J* 11.3, 4.0 Hz, 1H), 3.55 (dd, *J* 11.3, 6.5 Hz, 1H), 1.47 (s, 3H), 1.45 (s, 3H), 1.05 (s, 9H), 0.99 (s, 3H) ppm; ¹³C NMR (100.6 MHz, CDCl₃) δ 135.8, 135.7, 134.0, 133.6, 133.3, 129.91, 129.86, 127.80, 127.76, 118.5, 115.8, 100.5, 77.6, 70.5, 64.1, 40.7, 29.4, 26.9, 19.3, 18.7, 16.8 ppm; HRMS calcd for C₂₇H₃₆O₃NSi [M+H⁺]: 450.2459, found 450.2451 (-1.8 ppm). **S20b**: R_f = 0.30 (10:90 EtOAc:Hex); IR (neat) ν_{max} 3072, 2994, 2887, 2859, 1109 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.71 – 7.66 (m, 4H), 7.49 – 7.36 (m, 6H), 6.01 (ddd, *J* 17.7, 10.9, 1.1 Hz, 1H), 5.19 (d, *J* 10.9 Hz, 1H), 5.13 (d, *J* 17.6 Hz, 1H), 4.37 (s, 1H), 3.87 (ddd, *J* 5.8, 4.4, 1.2 Hz, 1H), 3.65 – 3.56 (m, 2H), 1.59 (s, 3H), 1.44 (s, 3H), 1.11 (s, 3H), 1.07 (s, 9H) ppm; ¹³C NMR (100.6 MHz, CDCl₃) δ 136.7, one aromatic carbon missing, 136.0, 133.7, 133.5, 130.2, 130.1, 128.1, 128.0, 117.5, 117.3, 102.4, 76.1, 68.6, 63.7, 42.0, 27.5, 27.1, 22.5, 19.5, 17.8 ppm; HRMS calcd for C₂₇H₃₆O₃NSi [M+H⁺]: 450.2459, found 450.2451 (-1.8 ppm).

Cyanohydrins 26a,b:

(±)-(2R,4R)-2,4-dihydroxy-3,3-dimethyl-7-phenylheptanenitrile (S21a):

To a solution of cyanohydrin **26a** (75 mg, 0.21 mmol, 1.0 equiv.) in dry THF (2 mL, 0.1 M) at 0 °C, HF-pyridine (0.42 mL, 2.0 mL/mmol) was added. The solution was warmed to room temperature and stirred overnight. An aqueous solution of NaHCO₃ was added and the aqueous layer extracted with Et₂O (3x). The organic layers were combined, dried with MgSO₄, filtered and concentrated in vacuo. Purification by flash chromatography using 35:65 EtOAc:Hex provided **S21a** as a clear oil (36 mg, 70 % yield): $R_f = 0.19$ (35:65 EtOAc:Hex); Molecular Formula: C₁₅H₂₁NO₂; MW: 247.34; IR (neat) u_{max} 3442, 2245 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.31 – 7.27 (m, 2H), 7.23 – 7.16 (m, 3H), 4.48 (d, *J* 3.2 Hz, 1H), 3.96 (s, 1H), 3.60 (ddd, *J* 10.6, 5.0, 1.8 Hz, 1H), 2.74 – 2.59 (m, 2H), 2.18 (s, 1H), 1.93 – 1.80 (m, 1H), 1.73 – 1.57 (m, 2H), 1.54 – 1.40 (m, 1H), 1.07 (s, 3H), 0.99 (s, 3H) ppm; ¹³C NMR (100.6 MHz, CDCl₃) δ 142.0, 128.6, 128.5, 126.1, 119.0, 78.3, 70.5, 41.7, 35.7, 31.4, 28.3, 21.6, 16.0 ppm; HRMS calcd for C₁₅H₂₂O₂N [M+H⁺]: 248.1645, found 248.1655 (+3.9 ppm).

(±)-(2*S*,4*R*)-2,4-dihydroxy-3,3-dimethyl-7-phenylheptanenitrile (S21b):

To a solution of cyanohydrin **26b** (29 mg, 0.079 mmol, 1.0 equiv.) in dry THF (0.8 mL, 0.1 M) at 0 °C, HFpyridine (0.16 mL, 2.0 mL/mmol) was added. The solution was warmed to room temperature and stirred overnight. An aqueous solution of NaHCO₃ was added and the aqueous layer extracted with Et₂O (3x). The organic layers were combined, dried with MgSO₄, filtered and concentrated in vacuo. Purification by flash chromatography using 35:65 EtOAc:Hex provided **S21b** as a clear oil (14 mg, 70 % yield): $R_f = 0.19$ (35:65 EtOAc:Hex); Molecular Formula: $C_{15}H_{21}NO_2$; MW: 247.34; IR (neat) ν_{max} 3426, 2243 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.30 (t, *J* 7.5 Hz, 2H), 7.23 – 7.15 (m, 3H), 4.53 (d, *J* 8.7 Hz, 1H), 4.25 (d, *J* 8.6 Hz, 1H), 3.93 (ddd, *J* 10.6, 4.5, 1.9 Hz, 1H), 2.75 – 2.60 (m, 2H), 2.15 (s, 1H), 1.92 – 1.82 (m, 1H), 1.73 – 1.61 (m, 1H), 1.60 – 1.52 (m, 1H), 1.50 – 1.39 (m, 1H), 1.04 (s, 3H), 1.00 (s, 3H) ppm; ¹³C NMR (100.6 MHz, CDCl₃) δ 141.8, 128.6, 128.5, 126.2, 119.3, 77.7, 71.9, 40.9, 35.7, 31.3, 28.0, 22.1, 17.8 ppm; HRMS calcd for C₁₅H₂₂O₂N [M+H⁺]: 248.1645, found 248.1650 (+2.0 ppm).

(±)-(4R,6R)-2,2,5,5-tetramethyl-6-(3-phenylpropyl)-1,3-dioxane-4-carbonitrile (S22a):

To a solution of diol **S21a** (18.7 mg, 0.0760 mmol, 1.00 equiv.) in dry CH₂Cl₂ (0.8 mL, 0.1 M) at 0 °C, 2methoxypropene (30 µL, 0.30 mmol, 4.0 equiv.) and camphor sulfonic acid (4 mg, 0.02 mmol, 0.2 equiv.) were added. The solution was stirred for 15 minutes at 0 °C then warmed to room temperature for 45 minutes. An aqueous solution of NH₄Cl was added and the aqueous layer was extracted with Et₂O (3x). The organic layers were combined, dried with MgSO₄, filtered and concentrated in vacuo. Purification by flash chromatography using 10:90 EtOAc:Hex provided acetonide **S22a** as a clear oil (22.1 mg, quantitative yield): R_f = 0.38 (10:90 EtOAc:Hex); Molecular Formula: C₁₈H₂₅NO₂; MW: 287.40; IR (neat) u_{max} 2250 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.32 – 7.27 (m, 2H), 7.22 – 7.15 (m, 3H), 4.41 (s, 1H), 3.47 (dd, *J* 9.6, 2.0 Hz, 1H), 2.66 – 2.55 (m, 2H), 1.89 – 1.80 (m, 1H), 1.60 – 1.45 (m, 3H), 1.44 (s, 3H), 1.14 (s, 3H), 0.91 (s, 3H) ppm; ¹³C NMR (100.6 MHz, CDCl₃) δ 142.4, 128.5, one aromatic carbon missing, 126.0, 116.5, 100.4, 77.0, 70.9, 36.1, 35.9, 29.7, 28.9, 28.3, 21.1, 18.8, 14.7 ppm; HRMS calcd for C₁₈H₂₆O₂N [M+H⁺]: 288.1958, found 288.1962 (+1.3 ppm).

(±)-(4S,6R)-2,2,5,5-tetramethyl-6-(3-phenylpropyl)-1,3-dioxane-4-carbonitrile (S22b):

To a solution of diol **S21b** (14 mg, 0.055 mmol, 1.0 equiv.) in dry CH₂Cl₂ (0.6 mL, 0.1 M) at 0 °C, 2methoxypropene (21 μ L, 0.22 mmol, 4.0 equiv.) and camphor sulfonic acid (3.0 mg, 0.011 mmol, 0.20 equiv.) were added. The solution was stirred for 15 minutes at 0 °C then warmed to room temperature for 45 minutes. An aqueous solution of NH₄Cl was added and the aqueous layer was extracted with Et₂O (3x). The organic layers were combined, dried with MgSO₄, filtered and concentrated in vacuo. Purification by flash chromatography using 10:90 EtOAc:Hex provided acetonide **S22b** as a clear oil (15.8 mg, quantitative yield): R_f = 0.5 (10:90 EtOAc:Hex); Molecular Formula: C₁₈H₂₅NO₂; MW: 287.40; IR (neat) ν_{max} 3061, 2991, 2943, 2866, 2991 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.29 (t, *J* 7.6 Hz, 2H), 7.22 – 7.16 (m, 3H), 4.27 (s, 1H), 3.75 (dd, *J* 9.9, 2.5 Hz, 1H), 2.64 (t, *J* 7.9 Hz, 2H), 1.92 – 1.81 (m, 1H), 1.65 – 1.60 (m, 1H), 1.58 (s, 3H), 1.51 – 1.42 (m, 2H), 1.40 (s, 3H), 1.05 (s, 3H), 1.01 (s, 3H) ppm; ¹³C NMR (100.6 MHz, CDCl₃) δ 142.3, 128.53, 128.51, 126.0, 118.4, 101.8, 74.2, 70.3, 36.4, 35.9, 28.6, 28.4, 28.2, 22.2, 21.9, 19.2 ppm; HRMS calcd for C₁₈H₂₆O₂N [M+H⁺]: 288.1958, found 288.1959 (+0.4 ppm).

Cyanohydrins 28a,b:

(\pm)-(2*R*, 4*S*)- 5-(benzyloxy)-2,4-dihydroxy-3,3-dimethylpentanenitrile (S23a) and (\pm)-(2*S*, 4*S*)- 5-(benzyloxy)-2,4-dihydroxy-3,3-dimethylpentanenitrile (S23b):

To a solution of cyanohydrin 28a,b (3:1 syn:anti) (54 mg, 0.15 mmol, 1.0 equiv. prepared following General Procedure C with BF₃·OEt₂) in dry THF (1.5 mL, 0.1 M) at 0 °C, HF-pyridine (0.30 mL, 0.29 mmol, 2.0 mL/mmol) was added. The solution was warmed to room temperature and stirred overnight. An aqueous solution of NaHCO₃ was added and the aqueous layer extracted with Et_2O (3x). The organic layers were combined, dried with MgSO₄, filtered and concentrated in vacuo. Purification by flash chromatography using 40:60 EtOAc:Hex provided **S23a** and **S23b** as clear oils (23.1 mg, 63 % yield). **S23a**: $R_f = 0.32$ (40:60 EtOAc:Hex); Molecular Formula: C₁₄H₁₉NO₃; MW: 249.31; IR (neat) υ_{max} 3440, 2244 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.42 – 7.29 (m, 5H), 4.58 (s, 2H), 4.50 (d, J 4.2 Hz, 1H), 4.22 (d, J 4.3 Hz, 1H), 3.82 (dt, J 7.8, 3.1 Hz, 1H), 3.64 (dd, J 9.5, 3.4 Hz, 1H), 3.58 (dd, J 9.5, 7.9 Hz, 1H), 2.87 (d, J 2.8 Hz, 1H), 1.11 (s, 3H), 1.07 (s, 3H) ppm; ¹³C NMR (100.6 MHz, CDCl₃) δ 137.1, 128.8, 128.4, 128.0, 118.7, 76.6, 73.9, 70.3, 70.1, 40.6, 22.0, 17.3 ppm; HRMS calcd for C₁₄H₂₀O₃N [M+H⁺]: 250.1438, found 250.1439 (+0.5 ppm). **S23b**: R_f = 0.30 (40:60 EtOAc:Hex); IR (neat) U_{max} 3414, 2242 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.41 – 7.30 (m, 5H), 4.58 (s, 2H), 4.54 (d, J 9.5 Hz, 1H), 4.21 (d, J 9.4 Hz, 1H), 4.17 (dt, J 8.8, 2.6 Hz, 1H), 3.60 (dd, J 9.3, 2.8 Hz, 1H), 3.46 (appt, J 9.1 Hz, 1H), 3.07 (d, J 2.3 Hz, 1H), 1.08 (s, 3H), 1.03 (s, 3H) ppm; ¹³C NMR (100.6 MHz, CDCl₃) δ 137.4, 128.8, 128.3, 127.9, 119.0, 75.5, 73.7, 72.0, 70.3, 39.5, 21.9, 18.4 ppm; HRMS calcd for C₁₄H₁₉O₃NNa [M+Na⁺]: 272.1257, found 272.1259 (+0.8 ppm).

(±)-(4*R*, 6*S*)- 6-(benzyloxymethyl)-2,2,5,5-tetramethyl-1,3-dioxane-4-carbonitrile (S24a) and (4*S*, 6*S*)- 6-(benzyloxymethyl)-2,2,5,5-tetramethyl-1,3-dioxane-4-carbonitrile (S24b):

To a solution of diol **S23a,b** (23 mg, 0.093 mmol, 1.0 equiv.) in dry CH₂Cl₂ (1.1 mL, 0.10 M) at 0 °C, 2methoxypropene (41 µL, 0.43 mmol, 4.0 equiv.) and camphor sulfonic acid (5.0 mg, 0.021 mmol, 0.20 equiv.) were added. The solution was stirred for 15 minutes at 0 °C then warmed to room temperature for 45 minutes. An aqueous solution of NH₄Cl was added and the aqueous layer was extracted with Et₂O (3x). The organic layers were combined, dried with MgSO₄, filtered and concentrated in vacuo. Purification by flash chromatography using 10:90 EtOAc:Hex provided acetonide **S24a** (16.6 mg) and **S24b** (8.7 mg) as a clear oils in 94% overall yield (25.3 mg). **S24a**: $R_f = 0.11$ (10:90 EtOAc:Hex); Molecular Formula: $C_{17}H_{23}NO_3$; MW: 289.38; IR (neat) υ_{max} 2251 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.39 – 7.27 (m, 5H), 4.60 (d, *J* 12.1 Hz, 1H), 4.49 (d, J 12.1 Hz, 1H), 4.46 (s, 1H), 3.81 (dd, J 6.6, 3.3 Hz, 1H), 3.59 (dd, J 10.6, 3.3 Hz, 1H), 3.42 (dd, J 10.6, 6.6 Hz, 1H), 1.47 (s, 3H), 1.47 (s, 3H), 1.13 (s, 3H), 1.00 (s, 3H) ppm; ¹³C NMR (100.6 MHz, CDCl₃) δ 138.0, 128.6, 127.9, 127.8, 116.2, 100.5, 76.6, 73.7, 70.7, 69.9, 35.1, 29.5, 21.1, 18.8, 15.0 ppm; HRMS calcd for C₁₇H₂₃O₃NNa [M+Na⁺]: 312.1570, found 312.1573 (+0.8 ppm). **S24b**: R_f = 0.16 (10:90 EtOAc:Hex); IR (neat) u_{max} 2250 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.39 – 7.27 (m, 5H), 4.61 (d, J 12.1 Hz, 1H), 4.51 (d, J 12.1 Hz, 1H), 4.25 (s, 1H), 4.02 (dd, J 6.9, 3.8 Hz, 1H), 3.57 (dd, J 10.6, 3.8 Hz, 1H), 3.47 (dd, J 10.6, 6.9 Hz, 1H), 1.61 (s, 3H), 1.43 (s, 3H), 1.11 (s, 3H), 1.05 (s, 3H) ppm; ¹³C NMR (126 MHz, CDCl₃) δ 138.1, 128.6, 127.9, 127.7, 117.9, 102.0, 73.9, 73.6, 70.1, 69.3, 36.0, 22.3, 22.1, 28.0, 19.3 ppm; HRMS calcd for C₁₇H₂₃O₃NNa [M+Na⁺]: 312.1570, found 312.1572 (+0.7 ppm).

Part II. X-ray information for acetonide S20a

Single crystals of C₂₇H₃₅NO₃Si were prepared from a mixture of ethyl acetate and hexanes. A suitable crystal was selected and mounted on a diffractometer. The crystal was kept at 150 K during data collection. A mixture of enantiomers were crystallized with both enantiomers observed in the cell matrix.

All non-H atoms were refined by full-matrix least-squares with anisotropic displacement parameters. The H atoms were generated geometrically (C—H 0.95 to 1.00°A) and were included in the refinement in the riding model approximation; their temperature factors were set to 1.5 times those of the equivalent isotropic temperature factors of the parent site (methyl) and 1.2 times for others. A final verification of possible voids was performed using the VOID routine of the PLATON program (Spek, 2000). Data collection: APEX2 (Bruker, 2004). Cell refinement: APEX2 (Bruker, 2004). Data reduction: SAINT (Bruker, 2004). Program(s) used to solve structure: SHELXS97 (Sheldrick, 1997). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: SHELXTL (Bruker, 1997). Software used to prepare material for publication: UdMX (local program).

Empirical formula	C ₂₇ H ₃₅ NO ₃ Si		
Formula weight	449.65		
Temperature	150(2)K		
Wavelength	1.54178 Å		
Crystal system	Monoclinic		
Space group	P21/c		
Unit cell dimensions	a = 13.2363(4) Å a = 90°		
	b = 8.5601(3) Å b = 93.899(2)°		
	c = 22.4586(8) Å g = 90°		
Volume	2538.76 ⁴ Å ³		
Z	4		
Density (calculated)	1.176 g/cm ³		
Absorption coefficient	1.025 mm ⁻¹		
F(000)	968		
Crystal size	0.24 x 0.22 x 0.20 mm		
Theta range for data collection	3.35 to 71.66°		
Index ranges	$-16 \le h \le 15, -10 \le k \le 10, -27 \le l \le 27$		
Reflections collected	57950		
Independent reflections	4955 [R _{int} = 0.045]		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	1.0000 and 0.8900		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	4955 / 0 / 295		
Goodness-of-fit on F ²	1.173		
Final R indices [I>2sigma(I)]	R ₁ = 0.0487, wR ₂ = 0.1267		
R indices (all data)	$R_1 = 0.0495$, $wR_2 = 0.1276$		
Largest diff. peak and hole	0.365 and -0.629 e/Å ³		

Bruker (1997). SHELXTL (1997). Release 5.10; The Complete Software Package for Single Crystal Structure Determination. Bruker AXS Inc., Madison, USA.

Bruker (2004). SAINT Release 7.12A. Integration Software for Single Crystal Data. Bruker AXS Inc., Madison, USA.

Bruker (2004). APEX2 Release 1.1.2.2; Bruker Molecular Analysis Research Tool, Bruker AXS Inc., Madison, USA.

Sheldrick, G. M. (1986). SHELXS86. Program for Crystal

Structure solution. University of Gottingen, Germany.

Sheldrick, G. M. (1996). SADABS, Bruker Area Detector Absorption Corrections. Bruker AXS Inc., Madison, USA.

Sheldrick, G. M. (2004). SADABS, Bruker Area Detector Absorption Corrections. Bruker AXS Inc., Madison, USA.

Sheldrick, G. M. (1997a). SHELXS97. Program for Crystal

Structure solution. University of Gottingen, Germany.

Sheldrick, G. M. (1997b). SHELXL97. Program for crystal structure refinement. University of Gottingen, Germany.

Spek, A. L. (2000). PLATON, 2000 version; Molecular Geometry Program, University of Utrecht, Utrecht, Holland.

Part III. Computational Data

Density functional theory (DFT) calculations was performed in Gaussian 09 (D.01) with tight SCF convergence.ⁱ The different possible -OiPr and -Cl ligand coordination positions were examined, the complex with the lowest energy is presented below. The energy reported is from the fully optimized structure at the M062Xⁱⁱ /6-31G* level of theory in DCM using the polarizable continuum model (PCM).ⁱⁱⁱ

of imaginary frequency (vi): none Energy (E, Ha): -5156.489258 Energy + zero-point energy (E + ZPE, Ha) at 273.15 K: -5155.989905 Energy + thermal free energies (G, Ha) at 273.15 K: -5156.052957

Symbol XYZ

O -0.21977300 -0.43997600 0.21725600
C 0.78371600 -1.36857100 0.66695800
C 1.37435100 -2.18340300 -0.50536200
C 0.26941700 -2.97981000 -1.15186900
O -0.92403200 -2.83035600 -0.94640900
Ti -2.23246100 -1.22018900 -0.15527700
Ti 0.22009200 1.43318800 -0.01177400
O 2.10685400 0.56809200 0.68333700
C 1.79474700 -0.58301200 1.47180500
C 2.05386300 -1.34917700 -1.57373800
C 2.38574600 -3.21989700 0.03364200
C 1.49635400 -0.96465600 -2.72021900
CI -2.00759400 -0.44481800 -2.34877100

ⁱⁱ Zhao, Y.; Truhlar, D. G. Acc. Chem. Res. **2008**, 41, 157.

ⁱⁱⁱ Cossi, M.; Scalmani, G.; Rega, N.; Barone, V. J. Chem. Phys. 2002, 117, 43.

¹ Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, **2013**.

Cl 1.54324700 2.49125000 -1.52900200 Cl -2.03070600 -2.35714700 1.90039200 C 3.27145700 1.29689400 1.14963100 C 4.52196800 0.55339100 0.77133900 C 4.96344800 0.58700700 -0.55542300 C 6.08340100 -0.14249600 -0.94079100 C 6.77348200 -0.90853500 -0.00019800 C 6.34543700 -0.93829000 1.32422400 C 5.22193200 -0.20716100 1.70902500 H 0.30228500 - 2.07575000 1.34666100 H 0.58429600 - 3.76763900 - 1.85253900 H 2.70183600 -1.15652400 1.67568800 H 1.35445800 -0.25311600 2.42168000 H 3.08514800 -1.08029800 -1.35039500 H 3.31230400 -2.72218700 0.33370800 H 1.98305000 -3.76842700 0.89061100 H 2.64235300 - 3.93804400 - 0.75014600 H 2.05964800 -0.37164700 -3.43405500 H 0.46776200 -1.19878700 -2.98282300 H 3.21324400 2.26973700 0.66016100 H 3.17369500 1.43200200 2.23226200 H 4.41785000 1.18488100 -1.28321400 H 6.42132300 -0.11212700 -1.97180100 H 7.64769600 -1.47774300 -0.30018300 H 6.88465500 -1.52712300 2.05937800 H 4.89138200 -0.22372000 2.74513700 O -1.27235500 2.00490500 -0.55258800 C -2.36696000 2.75676100 -1.07683800 H -3.19854100 2.04511200 -1.13349100 C -2.66545900 3.88443200 -0.10205700 H-3.555129004.42944000-0.42958600 H -2.83943700 3.49860800 0.90640100 H -1.81972600 4.57861200 -0.06599100 C -1.99444700 3.24805600 -2.46455400 H -1.13752600 3.92591000 -2.40646800 H -1.74220700 2.40591800 -3.11309700 H -2.84202900 3.78752300 -2.89677400 CI 0.31398800 2.56565600 1.94751000 O -3.08120300 0.09585900 0.50453000 C -3.96194800 0.74872400 1.42637500 C -5.15272200 -0.15284700 1.70121900 C -3.17095700 1.10667800 2.67192800 H-4.29377900 1.65910000 0.91246400 H -5.84881800 0.36387700 2.36829800 H -5.67236000 -0.40450400 0.77368300 H-4.82044700-1.078085002.18185700

Issue in honor of Dr. Stephen Hanessian

H -3.80200500 1.68321100 3.35459700

H -2.83871100 0.19531800 3.17771700

H -2.29448000 1.70586800 2.41054100

Cl -4.00732200 -2.54835800 -0.73864300

Part IV. ¹H and ¹³C spectra

Issue in honor of Dr. Stephen Hanessian

Issue in honor of Dr. Stephen Hanessian

©ARKAT USA, Inc

Page S24

Issue in honor of Dr. Stephen Hanessian

141.39 137.98	128.49 127.84 127.78	114.75	77.64 73.46 68.07	45.74	26.09 18.96 18.38	-3.93 -4.88
	SK					

¹³C-NMR (126 MHz, CDCl₃)

Issue in honor of Dr. Stephen Hanessian

Issue in honor of Dr. Stephen Hanessian

Issue in honor of Dr. Stephen Hanessian

137.69 136.79	128.74 128.33 128.14	118.84 118.20	76.09 73.82 71.41	49.08	26.00 18.30 16.97
- 12	Y	- \/	177 2		

¹H-NMR (500 MHz, CDCl₃)

Page S36
ARKIVOC 2019, iv, S1-S154

137.57 137.07 128.59 127.99 127.88 118.86 118.22 118.22	77.36 73.51 72.27 67.99	47.57	26.02 18.32 16.53	-4.07 -4.94
V V V	2 \ 2 \			52

7.35 7.33 7.33 7.33 7.33 7.33 7.33 7.33	55.11 55.110	1.26	0.85 0.84 0.83	0.05 0.04
			\checkmark	\vee

ARKIVOC 2019, iv, S1-S154

174.88	139.50 138.20 128.40 127.84 127.67	115.03	75.74 73.36 72.80	53.47 51.99	25.99 18.27 15.76	-3.88 -4.86
	V/ SK		Σ	17		- \7

Page S42

©ARKAT USA, Inc

ARKIVOC 2019, iv, S1-S154

ARKIVOC 2019, iv, S1-S154

140.58 138.58 138.55 128.57 128.53 128.53 128.53 128.53 128.53 127.84 127.82 127.76	115.03	83.73	73.64 73.57 71.78 68.80	45.54	18.79
			V22		

ARKIVOC 2019, iv, S1-S154

000 00 00 00 00 00 00 00 00 00 00 00 00	$ \begin{array}{c} \infty \\ \infty \\ \infty \\ \infty \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	, , , , , , , , , , , , , , , , , , ,	

ARKIVOC 2019, iv, S1-S154

— 1.22

, , , , , , , , , , , , , , , , , , ,	00 01000010		-00400-000
~~~~~~~~~~~		っ つ つ の の の の い ひ 4 4 0 0 0 0 .	9 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		0 10 10 <del>4</del> <del>4</del> <del>4</del> <del>4</del> <del>4</del> <del>4</del> <del>4</del> <del>4</del> <del>4</del> <del>0</del> <del>0</del> <del>0</del> <del>0</del> <del>0</del>	<u>m</u> mmmmmmmmmmm
	SE		





ARKIVOC 2019, iv, S1-S154









OPMB CO₂Me OBn Me S5



ARKIVOC 2019, iv, S1-S154

174.85	159.17	138.67 138.29 130.98 129.34 129.34 128.46 127.70	115.16 113.72	82.36	73.91 73.45 71.76	55.38 55.36 52.89 52.13	16.69
		$\vee$ SSZ	17		577	$\forall I \land$	











ARKIVOC 2019, iv, S1-S154

159.37	140.57 138.19 130.63 129.73 128.55 127.73 114.94 1113.93	83.31	73.54 73.22 71.87 68.89	55.39	45.43	18.79
	II SHE V		422			













ARKIVOC 2019, iv, S1-S154

201.78	159.29	137.94 136.46 130.32 129.56 129.56 127.77 127.77 117.52 117.52 113.77	81.16 73.44 73.18 70.32	56.22 55.30	15.27
				52	



















ARKIVOC 2019, iv, S1-S154













ARKIVOC 2019, iv, S1-S154

202.31	137.65 135.54	128.53 127.92 127.80	118.40	73.83 73.51 70.65	55.65	15.05
	\ /	SV.		$\mathbf{Y}$		











ARKIVOC 2019, iv, S1-S154

137.15 135.60 128.78 128.34 119.15 1119.15 118.15	74.99 73.81 68.39	46.92	16.10
	17.17		





000000000000440000	111008040	947788	4 0 0 4 0 0 0 0 1 4 4 0 0 0 0 0 0	L)
	) M M M M M M M M M M M M M M M M M M M	NNNNN	0 4 4 M M N N N N N N M M M M M M M M M M	<del></del>
				-





ARKIVOC 2019, iv, S1-S154

137.42 135.70 128.75 128.75 128.24 127.91	118.69 117.93	74.63 73.70 70.62 70.30	45.36	16.71
VIN	$\mathbf{V}$	N V		











ARKIVOC 2019, iv, S1-S154







7.67 7.67 7.67 7.67 7.67 7.65 7.65 7.65	$\begin{array}{c} 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\ 5.5 \\$	1.06 1.05 0.83	0.04
		VI	





ARKIVOC 2019, iv, S1-S154

141.7392 135.9208 135.8534 133.1156 133.0201 129.9519 129.9519 129.9519 129.9519 127.88300 127.8815	114.5355	79.0598	68.3101 66.4805	46.1847	27.0360 26.0330	19.2384 18.2472 18.2458	-3.9940 -4.8983
INV			17		- 52	SV	






ARKIVOC 2019, iv, S1-S154







7.7.7.5.69 7.7.7.5.69 7.7.7.5.69 7.7.7.4.4.4.4.7.7.7.5.69 7.7.7.4.4.4.4.4.7.7.7.7.4.4.4.4.4.4.4.5.5.5.5	1.16 1.08 1.08 1.07 0.78 0.77	0.01
$ \qquad \qquad$	$\checkmark$	







7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25 7.25	1.22 1.08 1.06 0.84 0.83	0.0 <del>-</del>
	$\checkmark$	



ARKIVOC 2019, iv, S1-S154



110 100 f1 (ppm) 0 -:

## Page S77







ARKIVOC 2019, iv, S1-S154









ARKIVOC 2019, iv, S1-S154



3.98 3.97 3.97 3.95 3.65 2.65 2.65 2.65 2.65 2.63 2.61	2.60 2.59 1.89 1.87 1.87 1.87 1.85 1.85 1.84 1.83 1.83 1.81	1.67 1.65 1.65 1.65 1.64 1.63 1.62 1.61 1.61 1.60 1.59 1.58 1.58 1.53	$\begin{array}{c} 1.52\\ 1.51\\ 1.50\\ 1.50\\ 1.49\\ 1.47\\ 1.46\\ 1.46\\ 1.46\\ 1.46\\ 1.46\\ 1.43\\ 1.43\\ 1.22\\ 1.22\\ 1.22\\ 1.22\\ 0.94\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\$





ARKIVOC 2019, iv, S1-S154













ARKIVOC 2019, iv, S1-S154







ARKIVOC 2019, iv, S1-S154







ARKIVOC 2019, iv, S1-S154

206.70	142.04	128.44 128.43 125.90	76.75	51.42	36.27 33.34 28.25 26.04 19.59 17.92 17.92	-3.62
		$\mathbf{Y}$			27 SS SK	$\sim$





ARKIVOC 2019, iv, S1-S154



























7.35 7.35 7.33 7.33 7.33 7.33 7.33 7.22 7.22 7.22	3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.357 3.3577 3.3577 3.3577 3.3577 3.3577 3.3577 3.3577 3.3577 3.35777 3.35777 3.35777 3.357777 3.357777777777	1.18 1.12 0.87	0.07
		12 \	







7.37 7.37 7.33 7.31 7.31 7.30 7.30 7.28 7.28 7.28 7.28	3 3 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0.96 0.89 0.88	0.08
		$\mathbf{Y}$	



ARKIVOC 2019, iv, S1-S154



78.46 73.58 69.86	39.27	26.05 22.50 22.27 18.30	-3.99 -4.93
1 51 1		$  \vee  $	











ARKIVOC 2019, iv, S1-S154







7.39 7.37 7.35 7.34 7.34 7.33 7.33 7.33 7.33	3.551 3.3.552 3.3.553 3.3.553 3.3.553 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.551 3.55	1.09 1.07 0.88	0.08 0.02
	V VV	$\vee$ /	





ARKIVOC 2019, iv, S1-S154







33133333333	4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	17 03 90	13
	<b>すすすすすす</b> すのののののののでので	ㅋㅋㅎ	00
		111	57

















163.56	150.53	141.00 138.30 138.09	128.39 128.04 127.70	116.07	79.46 73.51 72.99	64.90 50.49	26.62 26.10 24.26 11.33 11.33 13.88 12.45	-1.81 -3.53 -4.53
		58	$\mathbf{V}$					$\searrow$











163.58	151.48	140.51 138.29 138.07	128.47 127.87 127.72	116.98	111.36	79.33	73.77 73.38 72.47	64.39	49.14	26.52 24.34	19.12 14.45 14.37 14.37 12.57	-1.41 -3.13
		SV.	SK				YZ.			11	1V1	17




















ARKIVOC 2019, iv, S1-S154











ARKIVOC 2019, iv, S1-S154



©ARKAT USA, Inc









## ARKIVOC 2019, iv, S1-S154













ARKIVOC 2019, iv, S1-S154

138.12 136.59	128.55 127.84 127.70	117.29 117.28	102.35	74.51 73.52 68.43 68.43	42.09	27.39 22.40 17.79
17	SV	Y		57.57		215









Page S124

ARKIVOC 2019, iv, S1-S154













ARKIVOC 2019, iv, S1-S154

















ARKIVOC 2019, iv, S1-S154











ARKIVOC 2019, iv, S1-S154

135.62 135.60 135.60 135.16 135.45 132.48 130.24 119.15 119.15 118.06 118.06	76.53	68.66	64.17	46.66	26.94	19.30	15.77
MIKE V							







ARKIVOC 2019, iv, S1-S154

135.61 135.58 135.55 132.63 132.63 132.52 130.30 130.21 128.11 128.11 118.00 117.82 117.82	76.15	70.70	64.15	45.05	26.95	19.31 16.58
Y HILLY						











ARKIVOC 2019, iv, S1-S154

135.79 135.74 135.74 133.58 133.35 133.32 123.80 127.76 1127.80 127.76 115.77	100.53	77.62	70.45	64.13	40.73	29.35 26.92	19.27 18.65 16.77
							- 577





ARKIVOC 2019, iv, S1-S154



¹H-NMR (500 MHz, CDCl₃)





4.37





ОН ОН CN S21a Me Me



ARKIVOC 2019, iv, S1-S154

141.95	128.56 128.48 126.09 119.00	78.25	41.72	35.72 31.43 28.27	21.55 16.04
				235	









ARKIVOC 2019, iv, S1-S154

141.75	128.61 128.47 126.17 126.17 119.31	77.73 71.92	40.94	35.70 31.34 27.99	22.11 17.75	
	V2			215		





ARKIVOC 2019, iv, S1-S154



¹H-NMR (500 MHz, CDCl₃)





ARKIVOC 2019, iv, S1-S154

142.36	128.50	116.54	100.37	76.97 70.91	36.11 35.86 22.65 28.89 28.29 21.05 18.82 14.70





ARKIVOC 2019, iv, S1-S154



3.75

3.75

3.75

3.75

3.75

3.75

3.75

3.75

3.75

3.75

3.75

3.75

3.75

3.75

3.75

3.75

3.75

3.75

3.75

3.75

3.75

3.75

3.75

3.75

3.75

3.75

3.75

3.75

3.75

3.75

3.75

3.75

3.75

3.75

3.75

3.76

3.76

3.77

3.76

3.76

3.77

3.76

3.77

3.76

3.77

3.76

3.76

3.76

3.76

3.76

3.77

3.76

3.77

3.76

3.76

3.76

3.76

3.76

3.76

3.76

3.76

3.




ARKIVOC 2019, *iv*, S1-S154



¹³C-NMR (100.6 MHz, CDCl₃)





33 39 39 39 39	33 33	37 36	35 35 35 35	33 33 31 31 31	
アファブ	アブブ	ブブブ	スプスプ	スススス	

4.58 4.50 4.49 4.49 4.23 3.65 3.65 3.65 3.56 5.83 5.65 5.83 5.65 5.83 5.65 5.83 5.65 5.83 5.65 5.83 5.65 5.83 5.65 5.83 5.65 5.83 5.65 5.83 5.65 5.83 5.65 5.83 5.65 5.83 5.65 5.83 5.65 5.83 5.65 5.83 5.65 5.83 5.65 5.65 5.65 5.65 5.65 5.65 5.65 5.6	1.11 1.07
VVV VIIIIII	52

¹H-NMR (500 MHz, CDCl₃)





Issue in honor of Dr. Stephen Hanessian

ARKIVOC 2019, iv, S1-S154



¹³C-NMR (100.6 MHz, CDCl₃)







¹H-NMR (500 MHz, CDCl₃)





Issue in honor of Dr. Stephen Hanessian

ARKIVOC 2019, iv, S1-S154



¹³C-NMR (100.6 MHz, CDCl₃)







4,62 4,59 4,47 4,47 4,47 4,47 4,47 3,56 1,44 4,47 3,56 4,43 3,56 4,43 3,56 4,43 3,56 4,43 3,56 4,43 3,56 4,43 3,56 4,43 5,59 5,59 5,59 5,59 5,59 5,59 5,59 5,5	1.47 1.47	1.13 1.00
	$\vee$	

¹H-NMR (500 MHz, CDCl₃)





Page S150

©ARKAT USA, Inc

ARKIVOC 2019, iv, S1-S154







— 1.61 — 1.43

7.37 7.37 7.37 7.33 7.33 7.33 7.33 7.33	4 4.63 4 4.53 4 4.53 3 5.59 3 5.59 5

¹H-NMR (500 MHz, CDCl₃)





## ARKIVOC 2019, iv, S1-S154

138.10	128.58 127.87 127.72	117.87	101.99	73.89 73.58 69.34	36.02	28.03	22.34 22.06 19.28
	SV			$\vee$ $\vee$			$\mathbf{V}$

## ¹³C-NMR (126 MHz, CDCl₃)



## REFERENCES

1. Tambutet, G.; Becerril-Jimenez, F.; Dostie, S.; Simard, R.; Prevost, M.; Mochirian, P.; Guindon, Y. Org. Lett. 2014, 16, 5698.

 Rychnovsky, S.; Rogers, B.; Yang, G. J. Org. Chem. 1993, 58, 3511. http://10.1021/jo00065a011.

- 3. Duplessis, M.; Waltz, M. E.; Bencheqroun, M.; Cardinal-David, B.; Guindon, Y. Org. Lett. **2009**, *11*, 3148.
- Panda, A.; Islam, S.; Santra, M.; Pal, S. RSC Adv., 2015, 5, 82450-82459. http://dx.doi.org/10.1039/c5ra19080k.