Protecting-group directed stereospecific organocatalytic [3+2] cycloadditions: a facile access to chiral spirocyclic oxindoles

Bin Tan, ${ }^{a, b}$ Xuan Zhang, ${ }^{c}$ and Guofu Zhong*,a
${ }^{a}$ College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, 16 Xuelin St., Hangzhou, ZheJiang 310 036, P. R. China
${ }^{b}$ Department of Chemistry, South University of Science and Technology of China, Tangchang Rd., Shenzhen, Guandong 518 055, P. R. China
${ }^{c}$ Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637 371, Singapore E-mail: zgf@hznu.edu.cn

Dedicated to Professor Pierre Vogel on the occasion of his $70^{\text {th }}$ birthday

DOI: http://dx.doi.org/10.3998/ark.5550190.p008.401

Abstract

An efficient organocatalytic [3+2] cycloaddition between isocyanides and methyleneindolinones, with simultaneous formation of two quaternary stereocenters, for the rapid construction of dihydrospiro[pyrrolidin-3,3'-oxindole] derivatives with high enantiopurity and structural diversity was developed. Furthermore, different protecting group on the nitrogen atom of methyleneindolenones gave rise to a different major diastereoisomer, suggesting a new avenue of great importance to medicinal chemistry and diversity-oriented synthesis.

Keywords: Asymmetric catalysis, oxindoles, spirocyclic, organocatalysis, protecting group

Introduction

The spiro[pyrrolidin-3, 3^{\prime}-oxindole] skeleton is commonly presented in a large number of natural products ${ }^{1-3}$ as well as medicinally relevant compounds ${ }^{4-6}$ (Figure 1) and associated with significant biological activities. For instance, the Spirotryprostain B, isolated from the fermentation broth of Aspergillus fumigatus, has been proved to render complete inhibition of the G2/M progression in mammalian tsFT210 cells. ${ }^{7}$ In light of promising bioactivities, the therapeutic potential of this attractive heterocyclic spiro motifs has led to a demand for efficient construction of spiro[pyrrolidin-3,3'-oxindole] ring system with high enantioselectivity.

Rhynchophylline

Spirotryprostain B

Rhynchophylline

Spirotryprostain B

Chitosenine

Strychnofoline

Chitosenine

MI-219
Tang's Lead Compound

Schreiber's Lead Compound

MI-219
Tang's Lead Compound

Schreiber's Lead Compound

Figure 1. Some examples of natural occurring and biologically active spirocyclic oxindoles.

Over the past several years, intensive effort has been put into the asymmetric construction of this type of spirocyclic oxindole skeletons. However, resulting from the spiro structure, only a few transformations have achieved the goal. ${ }^{8-21}$ The challenges associated with the stereocontrolled construction of spirocyclic oxindole core arise from introducing quaternary carbon stereocenter at C-3 of oxindole, ${ }^{22,23}$ which is highly sterically congested. As a result, the direct catalytic enantioselective synthesis of the spirocyclic oxindole structure with two quaternary carbon chiral centers ${ }^{24,25}$ remains a daunting challenge.

I

II

III

IV

V

VII

Figure 2. Structures of cinchona alkaloid derived organocatalysts.

Cinchona alkaloids ${ }^{26-37}$ and their derivatives (Figure 2) have proven to be powerful organocatalysts for various organocatalytic ${ }^{38-42}$ asymmetric C-C bond formations. Recently, isocyanide has been reported as an efficient nucleophile, ${ }^{43-46}$ as the α-hydrogen atom is sufficiently acidic to be deprotonated by cinchona alkaloids. Inspired by this discovery, it is envisioned that the $[3+2]$ cycloaddition of isocyanide and methyleneindolinone may be promoted by bifunctional cinchona alkaloid catalysts, leading to a direct stereoselective access to dihydrospirocyclic oxindoles, which may be easily transformed into the spiro[pyrrolidin-3,3'oxindole] derivatives (Scheme 1).

Scheme 1. Proposed strategy for construction of spiro[pyrrolidin-3,3'-oxindole] skeletons by [3+2] cycloaddition between isocyanides and methyleneindolinones.

In this communication, the discovery of the first asymmetric organocatalytic [3+2] cycloaddition between isocyanide and methyleneindolinone with simultaneously formation of two quaternary and one tertiary stereocenters is reported for the rapid construction of
dihydrospiro[pyrrolidin-3,3'-oxindole] derivatives with high enantiopurity and structural diversity. Furthermore, different protecting group gave rise to different major diastereoisomer, which suggested a new avenue of great importance to medicinal chemistry and diversity-oriented synthesis.

Results and Discussion

The initial optimization began with the addition of isocyanide $\mathbf{1 a}$ (1.5 equiv) to methyleneindolinone $\mathbf{2 a}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in the presence of commercially available quinine (catalyst \mathbf{I}, $10 \mathrm{~mol} \%$) at room temperature. Although the reaction proceeded smoothly, the major product was separated from a 1.1 to 1 mixture of diastereoisomers in 43% yield with a poor enantioselectivity (32% ee, Table 1, entry 1). Several other cinchona alkaloids were tested (catalysts II and III) under the same condition, however, the yield and selectivity were generally not good (Table 1, entries 2 and 3). Notably, a significant improvement in both diastereo- and enantioselectivity was observed when cinchona alkaloids containing thiourea scaffolds were screened (Table 1, entries 4-7). The reactions fully completed within 2 hours and the highest ee was achieved using catalyst VI, accomplished with good yield (76\%) and catalyst VII produced the opposite enantiomer with comparable ee value. A subsequent solvent screening revealed that nonpolar solvents are beneficial to this type of reaction, as slight increase in enantioselectivity and yield was observed in toluene (Table 1, entry 8). There was somewhat drop in ee when only 1.0 equiv of isocyanide $1 \mathbf{1 a}$ was used (Table 1 , entry 10). Decreasing the reaction temperature prolonged the reaction time with no improvement in either enantioselectivity or yield (Table 1, entry 11). Finally, $5 \mathrm{~mol} \%$ catalyst loading was found to be better for obtaining high yield and excellent enantioselectivity (Table 1, entries 12 and 13).

With the optimized condition in hand, the scope of Boc-protected methyleneindolinones was investigated (Table 2). The presence of both electron withdrawing group and donating group at the indolinone moiety was all tolerated to afford more than 99% ee (Table 2, entries 1-5). Methyleneindolinone derivatives bearing various substituents at the C - C double bond also participated in the direct [3+2] cycloaddition reactions. Excellent enantioselectivity in up to $>99 \%$ ee was generally obtained with ester substituents on the C-C double bond (Table 2, entries 6 and 7). It was noteworthy that a slight drop in ee (only 98\%) with prolonged reaction time was observed as the ester substituents were replaced by ketones (Table 2, entries 8-10). The absolute configuration of Boc-protected product 3c was determined by X-ray crystallography (Figure 3).

Table 1. Catalyst screening and optimization of cycloaddition reaction conditions ${ }^{a}$

	 1 a		 Time (h)	$\text { Yield (\%) }{ }^{b}$		
Entry	Catalyst	Solvent			$\mathrm{dr}^{\text {c }}$	ee (\%) ${ }^{d}$
1	I	DCM	6	43	1.1:1	32
2	II	DCM	5	45	1.2:1	49
3	III	DCM	5	61	2.0:1	89
4	IV	DCM	2	67	3.2:1	95
5	V	DCM	2	76	4.1:1	96
6	VI	DCM	2	76	4.2:1	97
7	VII	DCM	2	74	4.0:1	97
8	VI	toluene	2	78	4.5:1	>99
9	VI	$\mathrm{Et}_{2} \mathrm{O}$	4	63	3.8:1	98
10^{e}	VI	toluene	4	71	5.0:1	97
11^{f}	VI	toluene	5	78	5.6:1	32
12^{g}	VI	toluene	2	80	5.5:1	>99
13^{h}	VI	toluene	4	75	5.2:1	89

${ }^{a}$ All reactions were carried out by using isocyanide $\mathbf{1 a}(0.15 \mathrm{mmol}, 1.5$ equiv $)$ and methyleneindolinone 2a ($0.1 \mathrm{mmol}, 1.0$ equiv) with $10 \mathrm{~mol} \%$ of catalyst at $23^{\circ} \mathrm{C} .{ }^{b}$ Isolated yield (major isomer). ${ }^{c} \mathrm{dr}$ determined by crude ${ }^{1} \mathrm{H}-\mathrm{NMR}$; the relative configuration of the minor diastereoisomer corresponds to that of compound 5a (see Table 3). ${ }^{d}$ ee was determined by chiral HPLC. ${ }^{e}$ Only 1.0 equivalent $\mathbf{1 a}$ was used. ${ }^{f}$ The reaction was conducted at $0{ }^{\circ} \mathrm{C} .{ }^{g} 5 \mathrm{~mol} \%$ catalyst was used. ${ }^{h}$ Catalyst loading was $2 \mathrm{~mol} \%$.

Figure 3. X-ray crystallography of Boc-protected product 3c.

In the course of cycloaddition between isocyanide and Boc-protected methyleneindolinones, besides the isolated major isomer, some minor compound was also observed in small amount. Since the spiro[indoline-3,3'-pyrrolidine] core is of promising biological properties, there is a high possibility that the minor stereoisomers process unique bioactivities. Therefore, it is a very great importance for "diversity-oriented synthesis", ${ }^{47}$ if the minor isomers could be formed as major products.

Based on the previous reports ${ }^{48}$ and our comprehension of this cycloaddition reaction, we anticipated that changing the electronic and steric properties of the methyleneindolinones by modification of the protecting group on nitrogen atom might be a promising approach to affect the diastereoselectivity. Remarkably, a new diastereoisomer ${ }^{49}$ was obtained as major product by simply replacing the protecting Boc-group with benzyl group. Several methyleneindolinones were selected for investigation of the generality of this approach (Table 3). Good yields and excellent enantioselectivities were obtained with methyleneindolinones bearing various substituents on the indolinone moiety and $\mathrm{C}-\mathrm{C}$ double bond. Compared with the Boc-protected substrates, the reaction with the Bn-protecting group is generally slower and needs double catalyst loading ($10 \mathrm{~mol} \%$).

Although the electronic and steric properties of the substrates pay a crucial role to the stereoselectivity of cycloaddition reaction, from the results of this specific reaction, the steric hindrance of protecting group is the determinant factor for high diastereoselectivity. For further understanding the inherent insight, we obtained the structure of a Bn-protected substrate by Xray crystallography (see the Supporting material). As one face may be blocked by the presence of protecting group, leaving one site open for the cycloaddition. Thus, a catalytic activation mode of the cycloaddtion reactions was proposed (Figure 4).

Table 2. Boc-protected substrates scope of the cycloaddition reactions ${ }^{a}$

${ }^{a}$ All reactions were carried out by using isocyanide $\mathbf{1 a}$ ($0.15 \mathrm{mmol}, 1.5$ equiv) and methyleneindolinone 2a-2J ($0.1 \mathrm{mmol}, 1$ equiv) with $5 \mathrm{~mol} \%$ of catalyst VI at $23{ }^{\circ} \mathrm{C}$. ${ }^{b}$ Isolated yield (major isomer). ${ }^{c}$ dr determined by crude ${ }^{1} \mathrm{H}-\mathrm{NMR}$. ${ }^{d}$ ee was determined by chiral HPLC. Further exploration of substrate scope was focused on the variation of isocyanides. Two more the methyl and benzyl isocyano-esters ($\mathbf{1 b}$ and 1c) were tested as typical examples (Scheme 2). Gratifyingly, both reactions proceeded smoothly in high yield and enantioselectivity, further illustrating the validity and generality of this direct asymmetric cycloaddition.

$$
1 \mathrm{c}: \mathrm{R}=\mathrm{OBn}
$$

3k: $\mathrm{R}=\mathrm{OMe}, 71 \%$ yield, $5.0: 1 \mathrm{dr},>99 \%$ ee
31: $\mathrm{R}=\mathrm{OBn}, 73 \%$ yield, $5.5: 1 \mathrm{dr},>99 \%$ ee

Scheme 2. Reactions with various isocyanides.

Table 3. Scope of the [3+2] cycloaddition with Bn-protected substrates ${ }^{a}$

			C-	$\frac{10 \mathrm{~mol} \% \text { catalys }}{\text { DCM, rt }}$		
Entry	\mathbf{R}^{3}	\mathbf{R}^{4}	5	Time (h) ${ }^{b}$	Yield (\%) ${ }^{b}$	ee (\%) ${ }^{\text {c }}$
1	OEt	H	5a	2	81	98
2	OEt	F	5b	2	67	99
3	OEt	Cl	5 c	2	73	97
4	OEt	Br	5d	2	75	98
5	Ph	Cl	5e	3	63	>99

${ }^{a}$ All reactions were carried out by using isocyanide 1a ($0.15 \mathrm{mmol}, 1.5$ equiv) and methyleneindolinone $\mathbf{4 a}-\mathbf{4 e}\left(0.1 \mathrm{mmol}, 1\right.$ equiv) with $10 \mathrm{~mol} \%$ of catalyst VI at $23{ }^{\circ} \mathrm{C}$. ${ }^{b}$ Isolated yield. (Crude ${ }^{1} \mathrm{H}-\mathrm{NMR}$ displayed only one major isomer. However, the product is not very stable, which decreased the isolated yield.) ${ }^{c}$ ee was determined by chiral HPLC.

Figure 4. Proposed activation mode of the catalyst and substrates.

Conclusions

An asymmetric organocatalytic [3+2] cycloaddition of isocyanide and methyleneindolinone has been developed in good yield and excellent enantioselectivity, tolerating a broad range of substrates. The approach was associated with the formation of two quaternary and one tertiary carbon stereogenic centers, providing a highly stereoselective solution to the complex spiro[pyrrolilin-3,3'-oxindole] ring skeleton. Remarkably, two different major diastereoisomers
can be selectively achieved by choosing different protecting groups on the nitrogen atom of methyleneindolinones. The success of this strategy opens up new perspectives in the construction of complex spiro[pyrrolidin-3, 3^{\prime}-oxindole] structure for a rapid access to biologically and pharmaceutically active candidates.

Experimental Section

General. Analytical thin layer chromatography (TLC) was performed using Merck 60 F254 precoated silica gel plate (0.2 mm thickness). Subsequent to elution, plates were visualized using UV radiation (254 nm) on Spectroline Model ENF-24061/F at 254 nm . Further visualization was possible by staining with basic solution of potassium permanganate or acidic solution of ceric molybdate. Flash chromatography was performed using Merck silica gel 60 with freshly distilled solvents. Columns were typically packed as slurry and equilibrated with the appropriate solvent system prior to use.
Proton nuclear magnetic resonance spectra (${ }^{1} \mathrm{H}$ NMR) were recorded on Bruker AMX 400 spectrophotometer $\left(\mathrm{CDCl}_{3}\right.$ as solvent). Chemical shifts for ${ }^{1} \mathrm{H}$ NMR spectra are reported as δ in units of parts per million (ppm) downfield from $\mathrm{SiMe}_{4}(\delta 0.0)$ and relative to the signal of chloroform-d ($\delta 7.26$, singlet). Multiplicities were given as: s (singlet), d (doublet), t (triplet), dd (double of doublet) or m (multiplets). The number of protons (n) for a given resonance is indicated by nH . Coupling constants are reported as a J value in Hz . Carbon nuclear magnetic resonance spectra (${ }^{13} \mathrm{C}$ NMR) are reported as δ in units of parts per million (ppm) downfield from $\mathrm{SiMe}_{4}(\delta 0.0)$ and relative to the signal of chloroform-d ($\delta 77.0$, triplet).
Enantioselectivities were determined by High performance liquid chromatography (HPLC) analysis employing a Daicel Chiralpak AD-H or OD-H. Optical rotations were measured in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ on a Schmidt + Haensdch polarimeter (Polartronic MH8) with a 1.0 mL cell (c given in $\mathrm{g} / 100 \mathrm{~mL}$). Absolute configuration of the products was determined by X-ray.
High resolution mass spectrometry (HRMS) was recorded on Finnigan MAT $95 \times$ P spectrometer.
General experimental procedure for the construction of spirocyclic oxindoles with organocatalytic [3+2] cycloaddition reactions (3a-3J). To a solution of methyleneindolinone ($0.1 \mathrm{mmol}, 1$ equiv), and isocyanide ($0.15 \mathrm{mmol}, 1.5$ equiv) in toluene (0.2 mL) was added catalyst VI ($0.005 \mathrm{mmol}, 0.05$ equiv). The resulting mixture was stirred at room temperature (23 ${ }^{\circ} \mathrm{C}$). After the reaction completed, the mixture was quenched with water (5 mL) and extracted with ethyl acetate ($2 \times 5 \mathrm{~mL}$). The combined organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was then removed under reduced pressure. The product was afforded by silica gel flash chromatography using gradient elution $(\mathrm{EtOAc} / \mathrm{Hexane}=1: 10$ to 1:6).

Chemical Formula: $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{7}$
Exact Mass: 506.2053

1-tert-Butyl $\quad 4^{\prime}, 5^{\prime}$-diethyl (3R,4'S,5'R)-2-oxo-5'-phenyl-4',5'-dihydrospiro[indoline-3,3'-pyrrole]-1,4',5'-tricarboxylate (3a). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93(\mathrm{~d}, J 8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J 8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.57(\mathrm{~d}, J 7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.26(\mathrm{~m}, 5 \mathrm{H}), 7.20(\mathrm{t}, J 7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.35-4.22$ $(\mathrm{m}, 2 \mathrm{H}), 4.18(\mathrm{~s}, 1 \mathrm{H}), 3.88-3.77(\mathrm{~m}, 2 \mathrm{H}), 1.62(\mathrm{~s}, 9 \mathrm{H}), 1.26(\mathrm{t}, J 6.8 \mathrm{~Hz}$, $3 \mathrm{H}), 0.75(\mathrm{t}, J 7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.21$, 170.73, 168.06, 161.85, 148.79, 141.91, 139.87, 129.71, 128.12, 127.68, $126.83,126.58,125.00,123.97,114.90,87.89,85.08,70.27,62.69,62.50$, 61.15, 28.02, 13.90, 13.36. HPLC: Chiralpak AD-H (hexane $\mathrm{i}-\mathrm{PrOH}=92 / 8$, flow rate $1 \mathrm{~mL} / \mathrm{min}$, $\lambda=210 \mathrm{~nm}), \mathrm{t}_{\mathrm{R}}($ major $)=6.7 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=9.8 \mathrm{~min} ;>99 \%$ ee. $[\alpha]_{\mathrm{D}}{ }^{21}=-9.7(\mathrm{c}=1.0$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{7}(\mathrm{M}+\mathrm{H})^{+}, \mathrm{m} / \mathrm{z} 507.2131$, found 507.2135.

Chemical Formula: $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{FN}_{2} \mathrm{O}_{7}$ Exact Mass: 524.1959

1-tert-Butyl 4',5'-diethyl 5-fluoro (3R,4'S,5'R)-2-oxo-5'-phenyl-4',5'dihydrospiro [indoline- 3,3'-pyrrole]-1,4', $\mathbf{5}^{\prime}$-tricarboxylate (3b). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.96$ (dd, $J 4.4,9.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.67 (dd, J 2.8, $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J 7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~m}, 4 \mathrm{H}), 7.12(\mathrm{~m}, 1 \mathrm{H}), 4.38-4.27$ $(\mathrm{m}, 2 \mathrm{H}), 4.19(\mathrm{~s}, 1 \mathrm{H}), 3.98-3.84(\mathrm{~m}, 2 \mathrm{H}), 1.63(\mathrm{~s}, 9 \mathrm{H}), 1.30(\mathrm{t}, J 7.2 \mathrm{~Hz}$, 3H), $0.84(\mathrm{t}, J 7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.86$, $170.58,167.83,161.41,161.28,158.85,148.73,141.62,135.86,128.16$, 127.77, 126.80, 125.90, 125.81, 116.32, 116.19, 116.09, 114.46, 114.20, 88.07, 85.30, 70.22, 62.70, 62.65, 61.31, 28.00, 13.90, 13.44. HPLC: Chiralpak OD-H (hexane/i-PrOH $=97 / 3$, flow rate $1 \mathrm{~mL} / \mathrm{min}, \lambda=210$ $\mathrm{nm}), \mathrm{t}_{\mathrm{R}}($ minor $)=7.4 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=9.1 \mathrm{~min} ;>99 \%$ ee. $[\alpha]_{\mathrm{D}}{ }^{21}=-16.4\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{FN}_{2} \mathrm{O}_{7}(\mathrm{M}+\mathrm{H})^{+}, \mathrm{m} / \mathrm{z} 525.2037$, found 525.2034.

Chemical Formula: $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{ClN}_{2} \mathrm{O}_{7}$ Exact Mass: 540.1663

1-tert-Butyl 4',5'-diethyl 5-chloro (3R,4'S,5'R)-2-oxo-5'-phenyl-4',5'dihydrospiro [indoline- 3,3'-pyrrole]-1,4',5'-tricarboxylate (3c). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93(\mathrm{~d}, J 8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J 2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.59(\mathrm{~d}, J 7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.28(\mathrm{~m}, 5 \mathrm{H}), 4.39-4.29(\mathrm{~m}, 2 \mathrm{H}), 4.18(\mathrm{~s}$, $1 \mathrm{H}), 4.01-3.96(\mathrm{~m}, 1 \mathrm{H}), 3.88-3.84(\mathrm{~m}, 1 \mathrm{H}), 1.63(\mathrm{~s}, 9 \mathrm{H}), 1.32(\mathrm{t}, J 7.2 \mathrm{~Hz}$, $3 \mathrm{H}), 0.85(\mathrm{t}, J 7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.57$, 170.32, 167.75, 161.30, 148.60, 141.66, 138.38, 130.53, 129.68, 128.17, 127.79 , 126.78, $126.74,125.80,116.15,88.10,85.48$, 69.98, 62.69, 62.68, 61.35, 27.99, 13.96, 13.46. HPLC: Chiralpak AD-H (hexane/i$\mathrm{PrOH}=95 / 5$, flow rate $1 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}$), $\mathrm{t}_{\mathrm{R}}($ minor $)=9.1 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (major) $=11.6 \mathrm{~min} ;>99 \%$ ee. $[\alpha]_{\mathrm{D}}{ }^{21}=39.0\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{ClN}_{2} \mathrm{O}_{7}(\mathrm{M}+\mathrm{H})^{+}, \mathrm{m} / \mathrm{z} 541.1742$, found 541.1745.

Chemical Formula: $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{BrN}_{2} \mathrm{O}_{7}$ Exact Mass: 584.1158

1-tert-Butyl 4',5'-diethyl 5-bromo (3R,4'S,5'R)-2-oxo-5'-phenyl-4',5'dihydrospiro[indoline -3,3'-pyrrole]-1,4',5'-tricarboxylate (3d). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.95(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{~d}, J 8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.54$ $(\mathrm{m}, 3 \mathrm{H}), 7.39-7.28(\mathrm{~m}, 4 \mathrm{H}), 4.41-4.28(\mathrm{~m}, 2 \mathrm{H}), 4.17(\mathrm{~s}, 1 \mathrm{H}), 4.03-3.95$ $(\mathrm{m}, 1 \mathrm{H}), 3.90-3.82(\mathrm{~m}, 1 \mathrm{H}), 1.63(\mathrm{~s}, 9 \mathrm{H}), 1.33(\mathrm{t}, \mathrm{J} 7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{t}, J$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.44,170.24,167.73$, $161.29,148.58,141.66,138.89,132.62,129.51,128.18,127.80,126.78$, $126.12,117.99,116.55,88.11,85.52,69.88,62.70,62.69,61.37,27.99$, 14.01, 13.48. HPLC: Chiralpak AD-H (hexane/i-PrOH $=97 / 3$, flow rate 1 $\mathrm{mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}), \mathrm{t}_{\mathrm{R}}($ minor $)=15.0 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=21.0 \mathrm{~min}$; $>99 \%$ ee. $[\alpha]_{\mathrm{D}}{ }^{21}=39.2\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{BrN}_{2} \mathrm{O}_{7}(\mathrm{M}+\mathrm{H})^{+}, \mathrm{m} / \mathrm{z}$ 585.1236, found 585.1234.

Chemical Formula: $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{7}$
Exact Mass: 520.2210 1-tert-Butyl 4',5'-diethyl 5-methyl (3R,4'S,5'R)-2-oxo-5'-phenyl-4',5'-dihydro-spiro[indoline-3,3'-pyrrole]-1, $\mathbf{4}^{\prime}, 5^{\prime}$-tricarboxylate (3e). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.82(\mathrm{~d}, J 8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.55(\mathrm{~m}, 3 \mathrm{H})$, 7.40-7.31 (m, 4H), $7.20(\mathrm{~d}, J 8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.37-4.28(\mathrm{~m}, 2 \mathrm{H}), 4.19(\mathrm{~s}, 1 \mathrm{H})$, 3.95-3.78 (m, 2H), $2.37(\mathrm{~s}, 3 \mathrm{H}), 1.63(\mathrm{~s}, 9 \mathrm{H}), 1.31(\mathrm{t}, J 7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.78$ $(\mathrm{t}, J 7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.27,170.54,168.08$, $162.05,148.83,142.01,137.50,134.61,130.15,128.11,127.66,126.97$, $126.82,123.85,114.70,87.83,84.90,70.32,62.61,62.39,61.10,28.03$, 21.18, 13.97, 13.38. HPLC: Chiralpak AD-H (hexane/i-PrOH = 95/5, flow rate $1 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}), \mathrm{t}_{\mathrm{R}}($ minor $)=8.6 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=11.5 \mathrm{~min} ;>99 \%$ ee. $[\alpha]_{\mathrm{D}}{ }^{21}=15.1$ ($\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{7}(\mathrm{M}+\mathrm{H})^{+}, \mathrm{m} / \mathrm{z} 521.2288$, found 521.2289.

Chemical Formula: $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{7}$ Exact Mass: 492.1897

1-tert-Butyl 5^{\prime}-ethyl $\mathbf{4}^{\prime}$-methyl (3R,4'S,5'R)-2-oxo-5'-phenyl-4',5'-dihydrospiro[indoline- 3,3'-pyrrole]-1, $\mathbf{4}^{\prime}, 5^{\prime}$-tricarboxylate (3f). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97(\mathrm{~d}, J 8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J 7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.59(\mathrm{~d}, J 1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.57-7.33(\mathrm{~m}, 5 \mathrm{H}), 7.23(\mathrm{t}, J 7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.37-$ $4.26(\mathrm{~m}, 2 \mathrm{H}), 4.22(\mathrm{~s}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{~s}, 9 \mathrm{H}), 1.29(\mathrm{t}, J 7.2 \mathrm{~Hz}$, 3H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.94,170.76,168.65,161.89$, $148.79,141.71,139.63,129.75,128.17,127.76,126.80,126.37,124.92$, 123.72, 114.97, 88.24, 85.14, 70.25, 62.53, 62.31, 52.05, 28.03, 13.92. HPLC: Chiralpak AD-H (hexane/i-PrOH $=95 / 5$, flow rate $1 \mathrm{~mL} / \mathrm{min}, \lambda=$ $210 \mathrm{~nm}), \mathrm{t}_{\mathrm{R}}($ major $)=11.7 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=14.4 \mathrm{~min} ;>99 \%$ ee. $[\alpha]_{\mathrm{D}}{ }^{21}=$ -7.5 $\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{7}(\mathrm{M}+\mathrm{H})^{+}, \mathrm{m} / \mathrm{z} 493.1975$, found 493.1969.

4'-Benzyl 1-tert-butyl 5'-ethyl (3R,4'S,5'R)-2-oxo-5'-phenyl-4',5'-dihydrospiro [indoline-3,3'-pyrrole]-1,4',5'-tricarboxylate (3g). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$

Chemical Formula: $\mathrm{C}_{33} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{7}$
Exact Mass: 568.2210 7.89 (d, J $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.78$ (d, J $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.57$ (d, J $1.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.56-7.18 (m, 9H), $6.91(\mathrm{~d}, J 6.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.87(\mathrm{~d}, J 12 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~d}$, $J 12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.37-4.25(\mathrm{~m}, 3 \mathrm{H}), 1.60(\mathrm{~s}, 9 \mathrm{H}), 1.27(\mathrm{t}, J 7.2 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.02,170.68,167.95,161.98,148.62$, $141.76,139.76,134.39,129.77,128.41,128.37,128.30,128.14,127.72$, 126.85, 126.47, 125.05, 123.68, 115.09, 88.01, 84.95, 70.24, 67.35, 62.54, 62.52, 27.99, 13.90. HPLC: Chiralpak AD-H (hexane/i-PrOH $=$ $90 / 10$, flow rate $1 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}$), t_{R} (major) $=10.8 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ (minor) $=13.2 \mathrm{~min} ;>99 \%$ ee. $[\alpha]_{\mathrm{D}}{ }^{21}=-9.7\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) . \mathrm{HRMS}(\mathrm{ESI})$ calcd for $\mathrm{C}_{33} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{7}(\mathrm{M}+\mathrm{H})^{+}, \mathrm{m} / \mathrm{z} 569.2288$, found 569.2290.

Chemical Formula: $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{6}$
Exact Mass: 476.1947

1-tert-Butyl $\quad 5^{\prime}$-ethyl $\quad 4^{\prime}$-acetyl (3R,4'S,5'S)-2-oxo-5'-phenyl-4',5'-dihydrospiro[indoline-3,3'-pyrrole]-1,5'-dicarboxylate (3h). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.99(\mathrm{~d}, J 8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J 7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-$ $7.34(\mathrm{~m}, 6 \mathrm{H}), 7.24-7.21(\mathrm{~m}, 2 \mathrm{H}), 4.42-4.28(\mathrm{~m}, 2 \mathrm{H}), 4.23(\mathrm{~s}, 1 \mathrm{H}), 1.73(\mathrm{~s}$, $3 \mathrm{H}), 1.65(\mathrm{~s}, 9 \mathrm{H}), 1.33(\mathrm{t}, J 7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $201.64,173.05,171.16,161.31,148.60,141.67,139.48,130.08,128.28$, $127.80,126.74,126.59,125.45,123.18,115.29,87.98,85.45,71.13$, 69.56, 62.52, 30.20, 28.03, 13.91. HPLC: Chiralpak OD-H (hexane/i$\mathrm{PrOH}=97 / 3$, flow rate $1 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}), \mathrm{t}_{\mathrm{R}}($ major $)=17.9 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}$ $($ minor $)=21.6 \mathrm{~min} ;>99 \%$ ee. $[\alpha]_{\mathrm{D}}{ }^{21}=35.2\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{6}(\mathrm{M}+\mathrm{H})^{+}, \mathrm{m} / \mathrm{z} 477.2026$, found 477.2028 .

Chemical Formula: $\mathrm{C}_{32} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{6}$ Exact Mass: 538.2104

1-tert-Butyl 5^{\prime}-ethyl 4^{\prime}-benzoyl (3R,4'S,5'S)-2-oxo-5'-phenyl-4',5'-dihydrospiro[indoline-3,3'-pyrrole]-1,5'-dicarboxylate (3i). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.72(\mathrm{~d}, J 7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J 7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.49$ (d, J $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.28(\mathrm{~m}, 7 \mathrm{H}), 7.21-7.12(\mathrm{~m}, 4 \mathrm{H}), 5.05(\mathrm{~s}, 1 \mathrm{H})$, 4.48-4.30 (m, 2H), $1.61(\mathrm{~s}, 9 \mathrm{H}), 1.32(\mathrm{t}, J 7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.40,173.54,171.15,160.73,148.23,142.43,139.16$, $137.37,133.00,129.79,128.33,128.19,127.59,127.28,127.22,126.93$, 125.07, 122.31, 114.39, 87.91, 84.96, 70.66, 66.77, 62.48, 28.01, 13.88. HPLC: Chiralpak IC (hexane $/ \mathrm{i}-\mathrm{PrOH}=90 / 10$, flow rate $1 \mathrm{~mL} / \mathrm{min}, \lambda=$ $210 \mathrm{~nm}), \mathrm{t}_{\mathrm{R}}($ major $)=13.8 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=29.5 \mathrm{~min} ; 97 \%$ ee. $[\alpha]_{\mathrm{D}}{ }^{21}=-$ 7.7 ($\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). HRMS (ESI) calcd for $\mathrm{C}_{32} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{6}(\mathrm{M}+\mathrm{H})^{+}, \mathrm{m} / \mathrm{z} 539.2182$, found 539.2183 .

Chemical Formula: $\mathrm{C}_{32} \mathrm{H}_{29} \mathrm{BrN}_{2} \mathrm{O}_{6}$
Exact Mass: 616.1209

1-tert-Butyl $\quad 5^{\prime}$-ethyl 4^{\prime}-(4-bromobenzoyl) (3R,4'S,5'S)-2-oxo-5'-phenyl-4',5'-dihydrospiro- [indoline-3,3'-pyrrole]-1,5'-dicarboxylate (3J). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.67(\mathrm{~d}, J 7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J 8.0$ $\mathrm{Hz}, 3 \mathrm{H}), 7.39-7.33(\mathrm{~m}, 6 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.13(\mathrm{~m}, 3 \mathrm{H}), 4.99$ $(\mathrm{s}, 1 \mathrm{H}), 4.44-4.31(\mathrm{~m}, 2 \mathrm{H}), 1.63(\mathrm{~s}, 9 \mathrm{H}), 1.31(\mathrm{t}, J 7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 195.40,173.45,170.98,160.61,148.05,142.22$, $139.11,136.10,131.63,129.99,128.80,128.26,128.19,127.70,127.78$, 126.87, 125.14, 122.15, 114.47, 87.95, 85.26, 70.58, 66.65, 62.53, 28.02, 13.87. HPLC: Chiralpak AD-H (hexane/i-PrOH $=85 / 15$, flow rate 1 $\mathrm{mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}), \mathrm{t}_{\mathrm{R}}($ major $)=16.9 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=26.5 \mathrm{~min} ; 98 \%$ ee. $[\alpha]_{\mathrm{D}}^{21}=-15.9\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. HRMS (ESI) calcd for $\mathrm{C}_{32} \mathrm{H}_{30} \mathrm{BrN}_{2} \mathrm{O}_{6}(\mathrm{M}+\mathrm{H})^{+}, \mathrm{m} / \mathrm{z}$ 617.1287, found 617.1284.

Chemical Formula: $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{7}$ Exact Mass: 492.1897

1-tert-Butyl 4'-ethyl 5'-methyl (3R,4'S,5'S)-2-oxo-5'-phenyl-4',5'dihydrospiro [indoline-3,3'- pyrrole]-1,4', 5'-tricarboxylate (3k). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.93$ (d, J $8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.77 (d, J $7.6 \mathrm{~Hz}, 1 \mathrm{H}$), $7.57(\mathrm{~d}, J 7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.21(\mathrm{t}, J 7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~s}$, $1 \mathrm{H}), 3.87-3.76(\mathrm{~m}, 5 \mathrm{H})$ (-CH3 and -CH2 overlap), 1.62 (s, 9H), 0.73 (t, J $7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.15,171.33,168.13$, $161.88,148.77,141.75,139.91,129.78,128.22,127.80,126.84,126.53$, 125.10, 123.82, 114.91, 87.70, 85.11, 70.38, 62.78, 61.25, 53.34, 28.02, 13.35. HPLC: Chiralpak AD-H (hexane/i-PrOH $=85 / 15$, flow rate 1 $\mathrm{mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}), \mathrm{t}_{\mathrm{R}}($ major $)=6.7 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ minor $)=8.4 \mathrm{~min} ;>99 \%$ ee. $[\alpha]_{D}{ }^{21}=-12.8\left(c=1.2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{7}(\mathrm{M}+\mathrm{H})^{+}, \mathrm{m} / \mathrm{z} 493.1975$, found 493.1972.

Chemical Formula: $\mathrm{C}_{33} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{7}$
Exact Mass: 568.2210
-5'-Benzyl 1-tert-butyl 4'-ethyl (3R,4'S,5'S)-2-oxo-5'-phenyl-4',5'dihydrospiro [indoline-3,3'- pyrrole]-1,4',5'-tricarboxylate (31). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91(\mathrm{~d}, J 8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.54(\mathrm{~m}, 3 \mathrm{H})$, $7.38-7.29(\mathrm{~m}, 7 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.02(\mathrm{t}, J 7.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.27$ (dd, J $12.6,24.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.22(\mathrm{~s}, 1 \mathrm{H}), 3.84-3.72(\mathrm{~m}, 2 \mathrm{H}), 1.61(\mathrm{~s}, 9 \mathrm{H}), 0.70(\mathrm{t}$, J $7.2 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.14,170.43,168.01$, 162.00, 148.77, 141.78, 139.82, 135.25, 129.68, 128.42, 128.17, 128.11, $127.94,127.79,126.88,126.52,124.97,123.74,114.88,87.82,85.10$, 70.32, 67.94, 62.63, 61.22, 28.02, 13.32. HPLC: Chiralpak AD-H (hexane $/ \mathrm{i}-\mathrm{PrOH}=90 / 10$, flow rate $1 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}$), $\mathrm{t}_{\mathrm{R}}($ minor $)=$ $14.3 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=19.4 \mathrm{~min} ;>99 \%$ ee. $[\alpha]_{\mathrm{D}}{ }^{21}=-13.4\left(\mathrm{c}=0.8, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. HRMS (ESI) calcd for $\mathrm{C}_{33} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{7}(\mathrm{M}+\mathrm{H})^{+}, \mathrm{m} / \mathrm{z} 569.2288$, found 569.2290.

General procedure for the construction of spirocyclic oxindoles with organocatalytic [3+2]cycloaddition reactions (5a-3f): To a solution of methyleneindolinone ($0.1 \mathrm{mmol}, 1$ equiv) and isocyanide $\mathbf{1 a}$ ($0.15 \mathrm{mmol}, 1.5$ equiv) in DCM (0.2 mL) was added catalyst VI (0.01
mmol, 0.1 equiv). The resulting mixture was stirred at room temperature $\left(23{ }^{\circ} \mathrm{C}\right)$. After the reaction completed, the mixture was quenched with water (5 mL) and extracted with DCM (2×5 $\mathrm{mL})$. The combined organic layer was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was then removed under reduced pressure. The product was afforded by silica gel flash chromatography using gradient elution $(\mathrm{EtOAc} /$ Hexane $=1: 10$ to $1: 6)$.

Chemical Formula: $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{5}$ Exact Mass: 496.1998

Diethyl 1-benzyl
(3R,4'S,5'S)-2-oxo-5'-phenyl-4', $5^{\prime}-$ dihydrospiro[indoline-3,3'-pyrrole]-4',5'- dicarboxylate (5a). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.73(\mathrm{~d}, J 1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.71(\mathrm{~s}, 1 \mathrm{H}), 7.56-7.32(\mathrm{~m}$, $8 \mathrm{H}), 7.26(\mathrm{t}, J 7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, \mathrm{~J} 7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{t}, 7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 6.80 (d, J $8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.03 (d, J 15.6, Hz, 1H), 4.96 (d, J 15.6, Hz, $1 \mathrm{H}), 4.86(\mathrm{~s}, 1 \mathrm{H}), 4.36(\mathrm{q}, J 7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.67-3.63(\mathrm{~m}, 2 \mathrm{H}), 1.32(\mathrm{t}, J 7.2$ $\mathrm{Hz}, 3 \mathrm{H}), 0.78(\mathrm{t}, J 7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.41$, 171.56, 167.83, 163.22, 143.64, 138.95, 135.18, 129.88, 128.96, 128.19, $128.09,127.93,127.34,126.81,126.64,123.80,122.98,109.59,89.39$, 68.51, 62.50, 60.66, 59.18, 44.38, 14.02, 13.49. HPLC: Chiralpak IB (hexane $/ \mathrm{i}-\mathrm{PrOH}=85 / 15$, flow rate $1 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}), \mathrm{t}_{\mathrm{R}}($ minor $)=$ $10.9 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=12.6 \mathrm{~min} ; 98 \%$ ee. $[\alpha]_{\mathrm{D}}{ }^{21}=58.7\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) . \mathrm{HRMS}$ (ESI) calcd for $\mathrm{C}_{30} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H})^{+}, \mathrm{m} / \mathrm{z} 497.2076$, found 497.2079.
Diethyl 1-benzyl 5-fluoro ($\mathbf{3 R}, \mathbf{4}^{\prime} \boldsymbol{R}, 5^{\prime} \boldsymbol{R}$)-2-oxo-5'-phenyl-4',5'-dihydrospiro[indoline-3,3'-pyrrole]-4', $\mathbf{5}^{\prime}$ - dicarboxylate (5b). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68(\mathrm{~d}, J 7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.51$ $(\mathrm{s}, 1 \mathrm{H}), 7.42-7.30(\mathrm{~m}, 8 \mathrm{H}), 6.93(\mathrm{t}, J 8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.67(\mathrm{q}, J 4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~d}, J 3.6 \mathrm{~Hz}, 2 \mathrm{H})$, $4.82(\mathrm{~s}, 1 \mathrm{H}), 4,32(\mathrm{q}, J 7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.67-3.61(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{t}, \mathrm{J} 7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.81(\mathrm{t}, J 7.2 \mathrm{~Hz}$,

Chemical Formula: $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{FN}_{2} \mathrm{O}_{5}$ Exact Mass: 514.1904

Chemical Formula: $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{ClN}_{2} \mathrm{O}_{5}$ Exact Mass: 530.1608 $3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.05,171.31,167.73,162.53$, $160.24,139.57,138.72,134.82,129.00,128.23,128.20,128.03,127.25$, $126.53,125.27,125.18,116.33,116.10,115.27,115.01,110.08,110.01$, 89.51, 68.54, 62.52, 59.34, 44.50, 13.97, 13.48. HPLC: Chiralpak OD-H (hexane $/ \mathrm{i}-\mathrm{PrOH}=95 / 5$, flow rate $1 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}$), $\mathrm{t}_{\mathrm{R}}($ minor $)=29.6$ $\min , \mathrm{t}_{\mathrm{R}}($ major $)=40.7 \mathrm{~min} ; 99 \%$ ee. $[\alpha]_{\mathrm{D}}{ }^{21}=-81.9\left(\mathrm{c}=1.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. HRMS (ESI) calcd for $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{FN}_{2} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H})^{+}, \mathrm{m} / \mathrm{z} 515.1982$, found 515.1979.

Diethyl 1-benzyl 5-chloro (3R,4'R,5'R)-2-oxo-5'-phenyl-4',5'dihydrospiro [indoline-3,3'-pyrr ole]-4', 5^{\prime}-dicarboxylate (5c). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.69(\mathrm{~d}, J 7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.27(\mathrm{~m}$, $10 \mathrm{H}), 7.63(\mathrm{~d}, J 8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{~s}, 2 \mathrm{H}), 4.80(\mathrm{~s}, 1 \mathrm{H}), 4.35-4.27(\mathrm{~m}, 2 \mathrm{H})$, $3.70-3.58(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{t}, J 7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.81(\mathrm{t}, J 7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.77,171.28,167.71,162.36,142.66,138.81$, $134.63,132.68,130.02,129.04,128.25,128.19,128.08,127.22,126.47$, $125.68,115.67,110.98,89.48,68.17,62.53,60.96,59.65,44.42,13.98$, 13.51. HPLC: Chiralpak OD-H (hexane/i-PrOH $=90 / 10$, flow rate 1
$\mathrm{mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}), \mathrm{t}_{\mathrm{R}}($ minor $)=19.4 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=25.1 \mathrm{~min} ; 97 \%$ ee. $[\alpha]_{\mathrm{D}}{ }^{21}=-17.5(\mathrm{c}=$ 1.1, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). HRMS (ESI) calcd for $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{ClN}_{2} \mathrm{O}_{5}(\mathrm{M}+\mathrm{H})^{+}, \mathrm{m} / \mathrm{z} 531.1687$, found 531.1683.

Chemical Formula: $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{BrN}_{2} \mathrm{O}_{5}$

Diethyl 1-benzyl 5-bromo (3R,4'R,5'R)-2-oxo-5'-phenyl-4', 5^{\prime} -dihydrospiro[indoline-3,3'-pyrrole]-4',5'-dicarboxylate (5d). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.68(\mathrm{~d}, J 7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~s}, 1 \mathrm{H}), 7.42-7.27(\mathrm{~m}$, 8H), 7.21-7.18 (m, 2H), 6.67 (d, J $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.93$ (s, 2H), 4.80 (s, 1H), 4.34-4.29 (m, 2H), 3.68-3.60 (m, 2H), 1.28 (t, J $7.2 \mathrm{~Hz}, 3 \mathrm{H}$), 0.81 (t, J 7.2 $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.88,171.29,167.71,162.38$, 142.16, 138.77, 134.66, 129.77, 129.03, 128.46, 128.25, 128.19, 128.07, $127.34,127.22,126.48,125.33,110.46,89.50,68.26,62.53,59.56,44.46$, 13.98, 13.48. HPLC: Chiralpak OD-H (hexane $/ \mathrm{i}-\mathrm{PrOH}=90 / 10$, flow rate $1 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}), \mathrm{t}_{\mathrm{R}}($ minor $)=19.5 \mathrm{~min}, \mathrm{t}_{\mathrm{R}}($ major $)=26.6 \mathrm{~min}$; 98% ee. $[\alpha]_{\mathrm{D}}{ }^{21}=-25.5\left(\mathrm{c}=1.0, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. HRMS (ESI) calcd for $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{BrN}_{2} \mathrm{O}(\mathrm{M}+\mathrm{H})^{+}, \mathrm{m} / \mathrm{z} 575.1182$, found 575.1180.

Chemical Formula: $\mathrm{C}_{34} \mathrm{H}_{27} \mathrm{ClN}_{2} \mathrm{O}_{4}$
Exact Mass: 562.1659

Ethyl 4'-benzoyl-1-benzyl 5-chloro (3R,4'R,5'S)-2-oxo-5'-phenyl$4^{\prime}, 5^{\prime}$-dihydrospiro[indoline -3,3'-pyrrole]-5'-carboxylate (5e). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71-7.85$ ($\mathrm{m}, 2 \mathrm{H}$), 7.51-7.47 (m, 4H), 7.36$7.27(\mathrm{~m}, 8 \mathrm{H}), 7.16-7.06(\mathrm{~m}, 4 \mathrm{H}), 6.53(\mathrm{~d}, \mathrm{~J} 8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{~s}, 1 \mathrm{H})$, 5.02 (d, J $15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J 15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.38-4.31(\mathrm{~m}, 2 \mathrm{H}), 1.28$ $(\mathrm{t}, J 7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 195.52,173.45$, $172.23,162.32,141.55,138.30,138.14,134.64,133.47,129.57,128.98$, 128.69 , 128.65, 128.32, 128.24, 128.05, 128.00, 127.01, 126.51, 124.69, $110.25,91.07,69.53,62.69,57.79,50.84,44.33,13.95$. HPLC: Chiralpak AD-H (hexane $/ \mathrm{i}-\mathrm{PrOH}=80 / 20$, flow rate $1 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}$), t_{R} (major) $=22.5$ $\min , \mathrm{t}_{\mathrm{R}}($ minor $)=43.5 \mathrm{~min} ;>99 \%$ ee. $[\alpha]_{\mathrm{D}}{ }^{21}=-44.7\left(\mathrm{c}=1.2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. HRMS (ESI) calcd for $\mathrm{C}_{34} \mathrm{H}_{28} \mathrm{ClN}_{2} \mathrm{O}_{4}(\mathrm{M}+\mathrm{H})^{+}, m / z 563.1738$, found 563.1735 .

Acknowledgements

Financial support from the National Natural Science Foundation of China (NSFC-21373073) and the Program for ChangJiang Scholars and Innovative Research Team in Chinese University (IRT 1231) is gratefully acknowledged. G.Z. appreciated a QianJiang Scholar from ZheJiang Province in China.

References

1. Lin, H.; Danishefsky, S. J. Angew. Chem., Int. Ed. 2003, 42, 36. http://dx.doi.org/10.1002/anie. 200390048
2. Galliford, C. V.; Scheidt, K. A. Angew. Chem., Int. Ed. 2007, 46, 8748.
http://dx.doi.org/10.1002/anie. 200701342
PMid:17943924
3. Marti, C.; Carreira, E. M. Eur. J. Org. Chem. 2003, 2209.
http://dx.doi.org/10.1002/ejoc. 200300050
4. Franz, A. K.; Dreyfuss, P. D.; Schreiber, S. L. J. Am. Chem. Soc. 2007, 129, 1020.
http://dx.doi.org/10.1021/ja067552n
PMid:17263369
5. Ding, K.; Lu, Y; Nikolovska-Koleska, Z.; Qiu, S.; Ding, Y.; Gao, W.; Stuckey, J.; Roller, P.
P.; Tomita, Y.; Deschamps, J. R.; Wang, S. J. Am. Chem. Soc. 2005, 127, 10130.
http://dx.doi.org/10.1021/ja051147z
PMid:16028899
6. Shangary, S.; Qin, D.; McEachern, D.; Liu, M.; Miller, R. S.; Qiu, S.; Nikolovska-Coleska, Z.; Ding, K.; Wang, G.; Chen, J.; Bernard, D.; Zhang, J.; Lu, Y.; Gu, Q.; Shah, R. B.; Pienta, K. J.; Ling, X.; Kang, S.; Guo, M.; Sun, Y.; Yang, D.; Wang, S. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 3933.
http://dx.doi.org/10.1073/pnas. 0708917105
PMid:18316739 PMCid:PMC2268798
7. Nicolaou, K. C.; Snyder, S. A. Proc. Natl. Acad. Sci. USA, 2004, 101, 11929.
http://dx.doi.org/10.1073/pnas. 0403799101
PMid:15302925 PMCid:PMC514411
8. Corey, E. J. Angew. Chem., Int. Ed. 2002, 41, 1650.
http://dx.doi.org/10.1002/1521-3773(20020517)41:10<1650::AID-ANIE1650>3.0.CO;2-B
9. Trost, B. M.; Cramer, N.; Silverman, S. M. J. Am. Chem. Soc. 2007, 129, 12396.
http://dx.doi.org/10.1021/ja075335w
PMid:17880222 PMCid:PMC2615581
10. Chen, X.; Wei, Q.; Luo, S.; Xiao, H.; Gong, L. J. Am. Chem. Soc. 2009, 131, 13819.
http://dx.doi.org/10.1021/ja905302f
PMid:19736987
11. Voituriez, A.; Pinto, N.; Neel, M.; Retailleau, P.; Marinetti, A. Chem.-Eur. J. 2010, 16, 12541.
http://dx.doi.org/10.1002/chem. 201001791
PMid:20853298
12. Liu, Y.; Nappi, M.; Arceo, E.; Vera, S.; Melchiorre, P. J. Am. Chem. Soc. 2011, 133, 15212. http://dx.doi.org/10.1021/ja206517s PMid:21842900
13. Tan, B.; Hernandez-Torres, G.; Barbas, C. F., III, J. Am. Chem. Soc. 2011, 133, 12354.
http://dx.doi.org/10.1021/ja203812h
PMid:21780763
14. Peng, J.; Huang, X.; Jiang, L.; Cui, H.; Chen, Y. Org. Lett. 2011, 13, 4584.
http://dx.doi.org/10.1021/ol201776h
PMid:21815615
15. Tan, B.; Candeias, N. R.; Barbas, C. F., III. Nat. Chem. 2011, 3, 473. PMid:21602863
16. Tan, B.; Candeias, N. R.; Barbas, C. F., III. J. Am. Chem. Soc. 2011, 133, 4672.
http://dx.doi.org/10.1021/ja110147w
PMid:21395245
17. Tan, B. Hernandez-Torres, G.; Barbas, C. F., III. J. Am. Chem. Soc. 2011, 133, 12354. http://dx.doi.org/10.1021/ja203812h PMid:21780763
18. Zhong, F.; Han, X.; Wang, Y.; Lu, Y. Angew. Chem., Int. Ed. 2011, 50, 7837. http://dx.doi.org/10.1002/anie. 201102094
PMid:21728218
19. Jia, Z.; Jiang, H.; Li, J.; Gschwend, B.; Li, Q.; Yin, X.; Grouleff, J.; Chen, Y.; Jorgensen, K. A. J. Am. Chem. Soc. 2011, 133, 5053. http://dx.doi.org/10.1021/ja1112194 PMid:21405125
20. Cao, Y.; Jiang, X.; Liu, L.; Shen, F.; Wang, R. Angew. Chem., Int. Ed. 2011, 50, 9124. http://dx.doi.org/10.1002/anie. 201104216 PMid:21919145
21. Tan, B.; Zeng, X.; Leong, W. W. Y.; Shi, Z.; Barbas, C. F., III.; Zhong, G., Chem.-Eur. J. 2012, 18, 63.
http://dx.doi.org/10.1002/chem. 201103449
PMid:22162076
22. Bui, T.; Candeias, N. R.; Barbas, C. F., III, J. Am. Chem. Soc. 2010, 132, 5574.
http://dx.doi.org/10.1021/ja101032j
PMid:20356308
23. He, R.; Shirakawa, S.; Maruoka, K. J. Am. Chem. Soc. 2009, 131, 16620.
http://dx.doi.org/10.1021/ja906821y
PMid:19886657
24. Quaternary Stereocenters. Challenges and Solutions in Organic Synthesis (Eds.: Christoffers, Baro, J. A.), Wiley-VCH, Weinheim, 2006.
25. Douglas,C. J.; Overman, L. E. Proc. Natl. Acad. Sci. USA, 2004, 101, 5363.
http://dx.doi.org/10.1073/pnas. 0307113101
PMid:14724294 PMCid:PMC397386
26. Tian, S.; Chen, Y.; Hang, J.; Tang, L.; McDaid, P.; Deng, L. Acc. Chem. Res. 2004, 37, 621. http://dx.doi.org/10.1021/ar030048s
PMid:15311961
27. Li, H.; Wang, Y.; Tang, L.; Deng, L., J. Am. Chem. Soc. 2004, 126, 9906.
http://dx.doi.org/10.1021/ja0472811
PMid:15303849
28. Ye, J.; Dixon, D. J.; Hynes, P. S. Chem. Commun. 2005, 4481.
http://dx.doi.org/10.1039/b508833j
PMid:16136258
29. McCooey, S. H.; Connon. S. J. Angew. Chem., Int. Ed. 2005, 44, 6367.
http://dx.doi.org/10.1002/anie. 200501721
PMid:16136619
30. Vakulya, B.; Varga, S.; Csampai, A.; Soos, T., Org. Lett. 2005, 7, 1967.
http://dx.doi.org/10.1021/ol050431s
PMid:15876031
31. Mattson, A. E.; Zuhl, A. M.; Reynolds, T. E.; Scheidt, K. A. J. Am. Chem. Soc. 2006, 128, 4932.
http://dx.doi.org/10.1021/ja056565i
PMid:16608309
32. Tan, B.; Chua, P. J.; Li, Y.; Zhong, G. Org. Lett. 2008, 10, 2437.
http://dx.doi.org/10.1021/ol8007183
PMid:18489178
33. Tan, B.; Shi, Z.; Chua, P. J.; Zhong,G. Org. Lett. 2008, 10, 3425.
http://dx.doi.org/10.1021/ol801246m
PMid:18616339
34. Tan, B.; Chua, P. J.; Zeng, X.; Lu, M.; Zhong, G. Org. Lett. 2008, 10, 3489.
http://dx.doi.org/10.1021/ol801273x
PMid:18630924
35. Tan, B.; Zhang, X.; Chua, P. J.; Zhong, G. Chem. Commun. 2009, 779.
http://dx.doi.org/10.1039/b813915f
PMid:19322439
36. Tan,B.; Lu, Y.; Zeng, X.; Chua, P. J.; Zhong, G. Org. Lett. 2010, 12, 2682. http://dx.doi.org/10.1021/ol1007795 PMid:20469881
37. Wu, Y.; Singh, R. P.; Deng, L. J. Am. Chem. Soc., 2011, 133, 12458.
http://dx.doi.org/10.1021/ja205674x
PMid:21766859 PMCid:PMC3156085
38. Dalko, P. I.; Moisan, L. Angew. Chem., Int. Ed. 2004, 43, 5138.
http://dx.doi.org/10.1002/anie. 200400650
PMid:15455437
39. List, B. Chem. Commun. 2006, 819.
http://dx.doi.org/10.1039/b514296m
PMid:16479280
40. Dondoni, A.; Massi, A. Angew. Chem., Int. Ed. 2008, 47, 4638.
http://dx.doi.org/10.1002/anie. 200704684
PMid:18421733
41. Melchiorre, P.; Marigo, M.; Carlone, A.; Bartoli, G. Angew. Chem., Int. Ed. 2008, 47, 6138. http://dx.doi.org/10.1002/anie. 200705523
PMid:18666089
42. Barbas, C. F., III. Angew. Chem., Int. Ed. 2008, 47, 42.
http://dx.doi.org/10.1002/anie. 200702210
PMid:17943929
43. Ito, Y.; Samura, M.; Hayashi, T. J. Am. Chem. Soc. 1986, 108, 6405.
http://dx.doi.org/10.1021/ja00280a056
44. Song, J.; Guo, C.; Chen, P.; Yu, J.; Luo, S. ; Gong, L. Chem.-Eur. J. 2011, 17, 7786.
http://dx.doi.org/10.1002/chem. 201100636
PMid:21618634
45. SladoJevich, F.; Trabocchi, A.; Guarna, A.; Dixon, D. J. J. Am. Chem. Soc. 2011, 133, 1710. http://dx.doi.org/10.1021/ja110534g
PMid:21247165
46. Wang, L.; Bai, J.; Peng, L.; Qi, L.; Jia, L.; Guo, Y.; Luo, X.; Xu, X.; Wang, L. Chem. Comтии. 2012,48, 5175.
http://dx.doi.org/10.1039/c2cc30746d
PMid:22517246
47. Tan, D. Nat. Chem. Biol. 2005, 1, 74.
http://dx.doi.org/10.1038/nchembio0705-74
PMid:16408003
48. Kissane, M.; Maguire, A. Chem. Soc. Rev. 2010, 39, 845.
http://dx.doi.org/10.1039/b909358n
PMid:20111795
49. We only determined the relative configuration of the Bn-protected products based on 2D NMR (NOESY).
